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SUMMARY

Many modern applications and workloads depend on GPUs, ranging from gaming and graphics
to machine learning and graph analysis. To support this ever-growing need for high-performance
parallel processing, constant innovation in GPUs and their micro-architectures is a must. These
innovations require methods to verify that changes made are beneficial for real workloads.

One way to verify these changes is through simulation, using e.g. Accel-Sim. These simulations are
a cheaper and more practical way to test new architectures, as compared to in-silicon verification. The
computational overhead of the simulation implies that only a subset of all kernels can be simulated
within reasonable time. To remedy this, techniques like PKS and Sieve are used.

These techniques focus on selecting a subset of kernels in a workload, simulating only these, and
then generalizing the results to the entire workload. This process takes a few steps, starting with
profiling the workload. After profiling, statistical techniques are used in combination with clustering
algorithms to determine which kernels to simulate.

This selection is then run through a simulator, giving us a certain set of performance metrics.
These metrics are then generalized to the entire workload, giving us an estimate of the performance
of the workload on the new architecture.

However, these techniques start from a flawed assumption. When simulating an entire workload,
preceding kernels might have impacted the state of the caches on the simulated GPU. This cache
state might lead to a different performance, depending on the degree of data reuse between kernels.
This problem is commonly named the cold-start problem, referring to the cold state of the caches at
the start of the execution.

In this thesis, we aim to show that the cold-start problem exists in both hardware and simulation.
After that, we’ve come up with a few possible mitigations, raising accuracy to a level where the cold-
start problem is no longer significant. We focus on both accuracy and feasibility, as the techniques
should be applicable to real-world workloads.
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SAMENVATTING

Deze dagen zijn er veel applicaties en workloads die grafische kaarten (GPU’s) gebruiken, van games
en andere grafische toepassingen tot machine learning en graaf-analyse. Om deze groeiende vraag
naar performante parallelle programma’s mogelijk te blijven maken, is er een constante nood aan
innovatie in GPU’s en hun micro-architectuur. Deze innovaties moeten echter altijd getest worden
om er zeker van te zijn dat de veranderingen ook daadwerkelijk een verbetering zijn.

Een veel gebruikte manier om deze veranderingen te controleren, is door het gebruik van simulaties,
bijvoorbeeld door gebruik te maken van Accel-Sim. Deze simulaties zijn een goedkopere en meer
praktische manier om nieuwe architecturen te testen, vergeleken met het bouwen van een nieuwe
chip. Het nadeel van deze simulaties is dat ze veel rekenkracht vereisen, waardoor het niet altijd
mogelijk is om alle kernels in een workload te simuleren. Het simuleren van een volledige workload
zou vaak te lang duren, waardoor er technieken zoals PKS en Sieve gebruikt worden.

Deze technieken bepalen een deelverzameling van de kernels, die dan gesimuleerd worden. De resul-
taten van de simulatie worden dan veralgemeend naar de volledige workload. Dit proces bestaat uit
een aantal stappen, beginnend met het profileren van de workload. Nadat een workload geprofileerd
is, worden statistische technieken gebruikt in combinatie met clustering algoritmes om te bepalen
welke kernels gesimuleerd worden.

Deze geselecteerde kernels worden dan gesimuleerd, waarna we een aantal prestatie-metingen krij-
gen. Deze metingen worden dan veralgemeend naar de volledige workload, waardoor we een schatting
krijgen van de prestaties van de workload op de nieuwe architectuur.

Deze technieken vertrekken echter van een gedeeltelijk foutieve aanname. Wanneer een volledige
workload gesimuleerd wordt, kunnen de kernels die voorafgaan aan de gesimuleerde kernel de staat
van de caches op de gesimuleerde GPU beïnvloed hebben. De staat van deze caches kan de prestaties
van de gesimuleerde kernel beïnvloeden, afhankelijk van de mate waarin de data hergebruikt wordt
tussen de kernels. Dit probleem wordt vaak het cold-start probleem genoemd, verwijzend naar de
“koude” staat van de caches aan het begin van de uitvoering.

In deze thesis proberen we aan te tonen dat het cold-start probleem zowel in hardware als in simu-
laties bestaat. Daarnaast hebben we een aantal mogelijke oplossingen bedacht, die de nauwkeurigheid
van de simulaties verhogen tot een niveau waarop het cold-start probleem niet langer significant is.
We focussen op zowel nauwkeurigheid als haalbaarheid, aangezien de technieken ook toepasbaar
moeten zijn op echte workloads.
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Quantifying and Mitigating the Cold-Start Problem in GPU Simulation

Jonas Sys1, Mahmood Naderan-Tahan2, Seyyed Hossein SeyyedAghaei Rezaei2, Lieven Eeckhout2

Abstract

Every year, more and more AI and machine learning papers are published [? ]. Many of these machine learning
algorithms rely on GPUs to train their models. Additionally, many other workloads, ranging from molecular simulation
to graph traversal, benefit greatly from the parallel processing power of GPUs. This increased demand for parallel
processing has led to an increasing need for innovation, constantly improving GPUs. In order to verify that these
changes are improvements, simulators [? ] are used. Modern simulation techniques rely on sampling [? ? ]. These
sampling techniques often assume a perfectly warmed-up hardware state, however this is not always the case. This article
measures the impact of the cold-start problem on GPU workloads (both in hardware and in simulator), and proposes
some mitigations.

1. Introduction

Since their inception in 1968, by the Evans and Suther-
land Computer Corporation, GPUs have come a long way [?
]. Gone are the fixed-function pipelines of the past, re-
placed by the programmable shaders of today. Machines
that used to be the size of a room are now small enough
chips to be embedded onto CPUs.

2007 introduced the CUDA platform [? ? ], which
allowed for general-purpose computing on GPUs. This was
a turning point for the GPU industry, as it allowed for the
use of GPUs in a wide range of applications. Today, GPUs
are used in a wide range of applications, from machine
learning to molecular dynamics simulations.

This increase in demand for parallel processing has led
to an increase in the complexity of GPUs. To further im-
prove on the design and micro-architecture of these com-
plex chips, changes have to be rigorously verified. This is
where simulators come in. Building a new GPU from the
ground up, in silicon, is costly and very time-consuming,
which does not lend itself to a fast-paced feedback loop.
Instead, simulators are used to model the behavior of the
chip, allowing for quick verification that changes are, in
fact, improvements.

Many of these simulators are proprietary, unreleased
to the public. However, one that is frequently used in
academia is Accel-Sim [? ]. Accel-Sim is a very flexible
simulator, allowing for a wide range of hardware platforms
to be simulated. It is also rather accurate, within the limits
set by opaque hardware specifications.

The main drawback is that simulating an entire work-
load or benchmark could easily take weeks, if not months [?

1Ghent University
2Department of Electronics and Information Systems, Faculty of

Engineering and Architecture, Ghent University

]. To speed up this process, sampling techniques are used.
A subset of the kernels in the workload is selected, and only
these kernels are simulated. If these kernels are sampled
correctly and are representative of the entire workload, the
results can be extrapolated to the entire workload.

Some of these techniques are Principal Kernel Anal-
ysis [? ] and Sieve [? ]. Based on profiler data, they
cluster all the kernels in the workload. From each of these
clusters, a representative is selected to be simulated.

The PKA technique goes even further, by projecting
the performance of the first part of a kernel onto the rest
of the kernel. The main idea is that, for almost any kernel,
the IPC stabilizes after a certain number of instructions.
Once this stabilization is detected, the simulation is halted,
and it is assumed that the rest of the kernel will have the
same IPC.

However, these sampling techniques assume that the
hardware is in a perfectly warmed-up state. This is not
always the case, since intermittent kernels are omitted.
These omitted kernels might affect the hardware state,
most notable the caches and/or TLBs, which in turn af-
fects the performance of the kernels that are simulated.
This problem is not unique to GPU simulation, but is also
present in CPU simulation [? ], and it is known as the
cold-start problem.

While the cold-start problem has been extensively stud-
ied in CPU simulation, little to no research has been done
on its impact on GPU simulation. In the context of CPU
simulation, solutions to the cold-start problem are based
on warming up the data structures in the simulator, by
simulating additional instructions. However, additional
simulation is expensive, as simulation is a lot slower than
execution in hardware. To mitigate this problem in CPU
simulation, a number of techniques have been proposed [?
? ? ? ? ? ? ]. Another avenue that has been explored
is the search for a correction factor [? ], which avoids
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additional simulation by analyzing the instruction trace.
This work makes the following contributions:

• It quantifies the impact of the cold-start problem on
GPU workloads. To this end, we will look at both
hardware (in-silicon) results, and simulator results.

• It proposes a number of mitigations to the cold-start
problem in GPU simulation, inspired by the main
avenues used in CPU simulation. We will also com-
pare these methods against one another, to see which
one is the most effective.

2. The cold-start problem in hardware

Using NVIDIA’s Nsight Compute [? ] tool, we were
able to profile a number of workloads3. To profile these
workloads, an NVIDIA GeForce RTX 3080 [? ] was used.
This GPU has 68 SM cores, and 6 MB of L2 cache.

Each workload was profiled twice: once normally, as it
would run in hardware, and once with the caches flushed
between kernel invocations. Nsight Compute supports this
option by using the --cache-control=all argument.

Below is a list of workloads that were profiled:

• The following benchmarks from the Cactus suite [?
]:

– Gromacs [? ] and LAMMPS [? ] (with both
rhodo (LMR) and colloid (LMC) inputs); two
molecular simulation workloads,

– Gunrock [? ] on both road (GRU) and social
networks (GST),

– DCGAN, neural style transform (NST) [? ], re-
inforcement learning (RFL), spatial transformer
(SPT) [? ] and language translation (LGT)
from PyTorch, and

• The following MLCommons benchmarks (from their
MLPerf® Inference v2.0 collection):

– The ResNet50 model [? ],
– Both MobileNet and ResNet34 variants of the

SSD model,
– The Bidirectional Encoder Representations for

Transformers (BERT) [? ], and
– The 3D U-Net model [? ]

• The DCT implementation present in the CUDA Sam-
ples [? ].

You can find the results of this experiment in Fig-
ure 1. This figure shows the relative IPC difference (rel-

ative to the non-flushed IPC: IPCf − IPCnf

IPCnf
· 100%) for

3Due to time constraints, only the first 20 000 kernels of each
workload were executed.
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Figure 1: Hardware IPC differences

each workload listed above. We note that the most promis-
ing workloads are DCGAN and Gunrock (on road traver-
sal) from the Cactus suite, along with DCT from the CUDA
Samples.

However, sampling methods like Sieve [? ] rely on
a kernel’s weight; i.e. the number of instructions in that
kernel relative to the total number of instructions in the
workload. Additionally, for each cluster computed by such
methods, the weights of the kernels in that cluster are
summed to get the cluster’s weight. That cluster weight
is then used when generalizing the results to the entire
workload; i.e. a weighted average is taken. When we take
these weights into account, we get a different result.
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Figure 2: Weighted hardware IPC differences

In Figure 2, you can see the weighted IPC differences
for each workload. For each workload, we have identi-
fied all kernel invocations with at least 5% (resp. 10%,
15%, and 20%) IPC difference. The weights of all of those
kernels were summed up, which is what you see. For 3D-
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UNet, for example, kernels worth around 10% of the work-
load have an IPC difference of between 15% and 20%.

Using that figure, we get a slightly different set of af-
fected workloads. Moving forward, we will focus mostly on
the DCT and 3D-UNet workloads, but some of the Cactus
benchmarks are still mildly affected.

2.1. Data Reuse
A factor that will prove to be rather important, is the

degree of data reuse between kernels. We will focus mostly
on the forward data reuse; i.e. the data that is used by a
kernel, then used again by the next. For any kernel ki, we
define the forward data reuse fwdi as:

fwdi = |Mi ∩ Mi+1|
|Mi|

(1)

Where Mi is the memory footprint (the set of unique mem-
ory addresses accessed) of kernel ki.

In Figure 3, we have visualized the forward data reuse
for two workloads. The first (Figure 3a) is the DCT im-
plementation which we already mentioned, and the second
is the recursiveGaussian implementation from the CUDA
SDK (Figure 3b).

As you can see, the inter-kernel data reuse in the DCT
application is rather high, consistently hitting 100%. On
the other hand, the recursiveGaussian application caps out
around 50%.
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Figure 3: Forward data reuse

3. The cold-start problem in Accel-Sim

After profiling the workloads in hardware, we moved
on to simulating them in Accel-Sim [? ]. Accel-Sim is a
very flexible simulator, allowing for a wide range of hard-
ware platforms to be simulated. It is built on top of the
GPGPU-Sim simulator [? ], which is a cycle-accurate sim-
ulator.

Before discussing the results, we will first explain the
simulator setup. We used the (pre-tested) NVIDIA GeForce
RTX3070 configuration. Some of the more interesting con-
figuration parameters are shown in Figure 4.

Once again, we ran each workload twice: once without
flushing the caches between kernel invocations, and once

Configuration parameter Value
L2 cache size 4 MB
Number of sets in L2 cache 64
L2 cache block size 128 B
L2 cache associativity 16
Number of memory controllers 16
Number of SMs 46
L2 Latency 187 cycles
DRAM Latency 254 cycles

Figure 4: Simulator configuration parameters

with the caches flushed. Accel-Sim supports this option
by using the --flush-l1 --flush-l2 arguments.

We decided to limit our experiments to the DCT and
3D-UNet workloads, as those were the most promising in
hardware. Another workload that showed promise was the
OceanFFT workload from the CUDA SDK. For feasibility,
we limited each workload’s execution to 130 kernels (which
is only a limit for the 3D-UNet workload).
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Figure 5: Weighted simulated IPC differences

The results of this experiment are shown in Figure 5.
Once again, we took into account the weights of each ker-
nel, showing the weighted IPC differences for each work-
load.

From this, we gather that the cold-start problem is
much less severe in the simulator than in hardware. We
assume that this is caused by the fact that the simulator is
an idealized version of the hardware. Some details might
have gotten lost, which in turn might have mitigated the
cold-start problem. A lot of hardware details are gated by
the industry, and are not publicly available, so the simu-
lator developers have to rely on micro-benchmarks to at-
tempt to reverse-engineer these details.

3.1. OceanFFT
Besides suffering a lot from the cold-start problem, the

OceanFFT workload also has an oddity. As you can see
in Figure 6, the IPC values are higher when we flush the
caches.
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Index IPC (flushing) IPC (no flushing) Forward Reuse (%)
1 2482.26 2487.96 12.50%
2 640.58 439.84 50.00%
3 1401.63 1397.86 0.00%
4 683.88 684.10 25.00%
5 1161.11 1160.73 n/a

Figure 6: OceanFFT IPC values

This is something we would not expect; we expect the
caches to speed up execution, not slow it down. The kernel
that is impacted the most by the cold-start problem is the
second one, which suffers approximately 31% difference.

We assume that it runs faster with flushed caches be-
cause it only reuses a small fraction of the data from the
previous kernel. The first kernel has a memory footprint
of 33.5 million addresses, of which the second kernel reuses
only 12.5% (4 million addresses).

If a lot of the cache lines are dirty, this causes a lot of
write-backs, which might pile up in the memory hierarchy.
This can stall the memory pipeline, which in turn causes
the processors to stall, reducing the IPC.

4. Mitigations

In order to mitigate the cold-start problem, we have
come up with a number of solutions:

• Perfect warmup: a naive approach would be to
simulate all preceding kernels, forcing the caches to
be warm. However, this goes directly against the
idea of sampling, and slows down the simulation sig-
nificantly.

• Memory-only warmup: a more refined approach
would be to only simulate the memory instructions
of the preceding kernels. This way, the caches are
warmed up, but the simulation is still faster than
simulating the entire kernel. Additionally, instead of
simulating each preceding kernel, we limit ourselves
to the most recent ones, as we expect these to have
the biggest impact, due to temporal locality.

• Correction factor: using data from the instruction
trace, as well as the simulator output, we can com-
pute a correction factor. This will prove to be able
to increase the accuracy of very inaccurate kernels,
at the cost of a slightly lower median accuracy.

4.1. Memory simulation
Using a modified version of the Accel-Sim tracing tool,

we were able to generate an additional trace for each ker-
nel. This trace includes only the memory instructions,
which can be used to quickly warm up the caches.

We have identified four DCT kernels which suffer a
lot from the cold-start problem, and have simulated them
with and without the memory-only warmup. Up to ten
preceding kernels were simulated (in memory-only mode).

Additionally, we compare these with the perfect warmup
(where every single preceding instruction is simulated), as
well as the full memory warmup (where all memory in-
structions from all preceding kernels are simulated).

Two main observations can be made from Figure 7:

1. A single kernel warmup is usually more than enough
to warm up the caches. The accuracy of all the ker-
nels above increased to at least 97%.

2. There is still a difference between the perfect accu-
racy, and the full memory accuracy. We assume that
this is due to the instructions being re-ordered: since
intermittent instructions (e.g. ALU instructions) are
removed from the traces, some memory instructions
might get re-ordered. This results in a different cache
state, which might in turn affect the simulator re-
sults.

4.2. Correction factor
We have come up with a formula that is able to par-

tially mitigate the cold-start problem, without any addi-
tional simulation. It is based on the following observations:

• We can estimate an upper bound for the impact of
the cold-start problem by looking at the number of
cold misses. A subset of these misses will be due to
the cold-start problem; while another part will be
due to the inherent nature of the workload.

• The fraction of cold misses that are due to the cold-
start problem is proportional to the degree of forward
data reuse. Only reused accesses can be sped up by
caches, so these are the only ones that can be affected
by the cold-start problem.

• Multiple memory requests can be served in paral-
lel by the DRAM controllers. This means that we
should take into account the memory controller oc-
cupancy.

• The number of cycles lost due to the cold-start prob-
lem is proportional to the difference in latency be-
tween DRAM and the L2 cache.

Using these observations, we have come up with the
following formula4:

IPC = insn

cyclesf − ∆ (2)

∆ = accesses

controllers · line
· fwdi−1 · (DRAM − L2) (3)

Where:

• IPC is the final, corrected IPC;

4Since we use a subtractive factor for the number of cycles, this
formula can not be used for OceanFFT.
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Figure 7: DCT mitigation results

• insn is the number of instructions dynamically exe-
cuted by the kernel;

• cyclesf is the number of cycles used in the flushed
case;

• ∆ is the correction factor;

• accesses is the number of unique DRAM accesses in
the kernel (e.g. the number of memory requests due
to cold misses);

• controllers is the number of memory controllers, weighted
by their occupancy;

• line is the cache line size;

• fwdi−1 is the forward data reuse of the previous ker-
nel; and

• DRAM and L2 are the latencies of the DRAM and
L2 cache, respectively.

4.3. Comparison
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Figure 8: Comparison of mitigations

In Figure 8, we have compared the different mitigation
strategies. As you can see, both mitigations are able to
eliminate the suffering kernels. However, the correction
factor does suffer from a lower median accuracy. Simu-
lating the memory instructions from the previous kernel,
however, is a very accurate approach for a rather low com-
putational cost. This is the most promising mitigation
strategy, and the one we recommend going forward.

5. Conclusion

In this article, we have quantified the impact of the
cold-start problem on GPU workloads. We started by an-
alyzing the impact in hardware, seeing that it is an issue
for a number of workloads. We have made a note on the
importance of data reuse, and how it affects the cold-start
problem.

After that, we moved on to simulating the workloads
in Accel-Sim. We have seen that the cold-start problem is
much less severe in the simulator than in hardware, but it
is still present. An unexpected result was the OceanFFT
workload, which ran faster with flushed caches.
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Finally, we have looked into some mitigation strategies.
The most promising of these is based on additional simu-
lation, and artificial warming of the caches. This method
managed to improve the accuracy drastically, without a
significant computational cost. The other avenue we ex-
plored was a correction factor, based on the number of
cold misses and the degree of data reuse. This method
was able to eliminate the suffering kernels, but at the cost
of a slightly lower median accuracy.
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Meten en inperken van het koudestart-probleem by het simuleren van GPUs

Jonas Sys1, Mahmood Naderan-Tahan2, Seyyed Hossein SeyyedAghaei Rezaei2, Lieven Eeckhout2

Abstract

Elk jaar worden er meer en meer AI- en machine learning-artikelen gepubliceerd [? ]. Veel van deze machine learning-
algoritmen vertrouwen op GPU’s om hun modellen te trainen. Bovendien profiteren veel andere workloads, variërend
van moleculaire simulatie tot graaf-algoritmen, enorm van de parallelle verwerkingskracht van GPU’s. Deze toenemende
vraag naar parallelle verwerking heeft geleid tot een grotere nood aan innovatie, waarbij GPU’s voortdurend worden
verbeterd. Om te controleren dat deze veranderingen effectief verbeteringen zijn, worden simulators gebruikt [? ].
Moderne technieken voor simulatie vertrouwen op sampling [? ? ]. Deze sampling-technieken gaan er vaak van uit dat
de hardware bij het begin perfect opgewarmd is, maar dat is niet altijd het geval. In dit artikel zullen we de impact
van het koudestart-probleem op GPU-workloads (zowel in hardware als in de simulator) meten en enkele verbeteringen
voorstellen.

1. Introductie

Sinds hun uitvinding in 1968 door de Evans and Su-
therland Computer Corporation zijn GPU’s al veel ver-
anderd [? ]. De fixed-function pipelines van vroeger zijn
vervangen door de programmeerbare shaders van vandaag.
Machines die vroeger zo groot waren als een kamer, zijn
nu kleine chips die op CPU’s kunnen worden ingebed.

In 2007 werd het CUDA-platform geïntroduceerd [?
? ], dat meer algemene berekeningen op GPU’s mogelijk
maakte. Dit was een keerpunt voor de GPU-industrie, om-
dat het gebruik van GPU’s in een breed scala van toepas-
singen mogelijk maakte. Vandaag de dag worden GPU’s
gebruikt in vele toepassingen, van machine learning tot
moleculaire simulaties.

Deze toename in de vraag naar parallelle verwerking
heeft geleid tot een toename van de complexiteit van GPU’s.
Om het ontwerp en de micro-architectuur van deze com-
plexe chips verder te verbeteren, moeten veranderingen
grondig worden gecontroleerd. Hier komen simulators in
beeld. Het bouwen van een nieuwe fysieke GPU, is duur
en zeer tijdrovend, waardoor een snel feedbackproces niet
mogelijk is. In plaats daarvan worden simulators gebruikt
om het gedrag van de chip te modelleren, zodat snel kan
worden geverifieerd dat veranderingen inderdaad verbete-
ringen zijn.

Veel van deze simulators zijn eigendom van bedrijven
en niet openbaar beschikbaar. Eén van de simulators die
vaak in de academische wereld wordt gebruikt, is Accel-
Sim [? ]. Accel-Sim is een zeer flexibele simulator, die het
mogelijk maakt om een groot aantal verschillende hardwa-
replatformen te simuleren. Bovendien is de simulator vrij

1Ghent University
2Department of Electronics and Information Systems, Faculty of

Engineering and Architecture, Ghent University

nauwkeurig, binnen de grenzen die worden gesteld door de
geheimhouding van de hardware-specificaties.

Het simuleren van een volledige workload of benchmark
kan echter weken, zo niet maanden duren [? ]. Om dit
proces te versnellen, worden sampling-technieken gebruikt.
Een subset van de kernels in de workload wordt geselec-
teerd en alleen deze kernels worden gesimuleerd. Als deze
kernels correct worden gesampled en representatief zijn
voor de volledige workload, kunnen de resultaten worden
veralgemeend naar de volledige workload.

Enkele van deze technieken zijn Principal Kernel Ana-
lysis [? ] en Sieve [? ]. Op basis van profiler-data clusteren
ze alle kernels in de workload. Uit elk van deze clusters
wordt een representatieve kernel geselecteerd om te simu-
leren.

De PKA-techniek gaat nog een stap verder, door de
performance van het eerste deel van een kernel te projec-
teren naar de rest van de kernel. Het idee is dat voor bijna
elke kernel de IPC stabiliseert na een bepaald aantal in-
structies. Zodra deze stabilisatie is gedetecteerd, wordt de
simulatie stopgezet en wordt aangenomen dat de rest van
de kernel dezelfde IPC zal hebben.

Het nadeel van deze technieken is dat ze ervan uitgaan
dat de hardware in een perfect opgewarmde toestand is.
Doordat tussenliggende kernels worden weggelaten, is dit
niet altijd het geval. Deze weggelaten kernels kunnen de
hardware-toestand beïnvloeden, met name de caches en/of
TLB’s, wat op zijn beurt de prestaties van de gesimuleerde
kernels beïnvloedt. Dit probleem is niet uniek voor GPU-
simulatie, maar is ook aanwezig in CPU-simulatie [? ], en
staat bekend als het koudestart-probleem.

Terwijl het koudestart-probleem uitgebreid is bestu-
deerd in CPU-simulatie, is er weinig tot geen onderzoek
gedaan naar de impact ervan op GPU-simulatie. In de con-
text van CPU-simulatie zijn oplossingen voor het koudestart-
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probleem gebaseerd op het opwarmen van de datastructu-
ren in de simulator, door het simuleren van extra instruc-
ties. Extra simulatie is echter duur, omdat simulatie veel
trager is dan uitvoering in hardware. Om dit probleem
in CPU-simulatie in te perken, zijn een aantal technieken
voorgesteld [? ? ? ? ? ? ? ]. Een andere benadering die
is onderzocht, is het zoeken naar een correctiefactor [? ],
die extra simulatie vermijdt door de trace van instructies
te analyseren.

Dit werk levert de volgende bijdragen:

• Het kwantificeert de impact van het koudestart-probleem
op GPU-workloads. Hiervoor zullen we zowel hardware-
als simulatieresultaten bekijken.

• Het stelt een aantal oplossingen voor om het koudestart-
probleem in GPU-simulatie in te perken, geïnspi-
reerd op de belangrijkste methoden die in CPU-simulatie
worden gebruikt. We zullen deze methoden ook met
elkaar vergelijken, om te zien welke het meest effec-
tief is.

2. Het koudestart-probleem in hardware

Met behulp van NVIDIA’s Nsight Compute [? ] tool,
waren we in staat om een aantal workloads te profileren3.
Om deze workloads te profileren, werd een NVIDIA Ge-
Force RTX 3080 [? ] gebruikt. Deze GPU heeft 68 SM-
kernen en 6 MB L2-cache.

Elke workload werd twee keer geprofileerd: een keer
normaal, zoals het in hardware zou draaien (noflush), en
een keer waar de caches geleegd werden tussen kernel-
oproepen (flush). Nsight Compute ondersteunt deze optie
door het --cache-control=all argument te gebruiken.

Hieronder vindt u een lijst van de geprofileerde worklo-
ads:

• De volgende benchmarks van de Cactus suite [? ]:

– Gromacs [? ] en LAMMPS [? ] (met zowel
rhodo (LMR), als colloid (LMC) invoer); twee
moleculaire simulatieprogramma’s,

– Gunrock [? ] met zowel wegen- (GRU), als
sociale netwerken (GST),

– DCGAN, neural style transform (NST) [? ],
reinforcement learning (RFL), spatial transfor-
mer (SPT) [? ] en language translation (LGT)
van PyTorch, en

• De volgende MLCommons benchmarks (van hun ML-
Perf® Inference v2.0 collection):

– Het ResNet50 model [? ],
– Zowel het MobileNet, als het ResNet34 variant

van het SSD-model,

3Vanwege tijdgebrek werden slechts de eerste 20 000 kernels van
elke workload uitgevoerd.

– Het Bidirectional Encoder Representations for
Transformers (BERT) [? ], en

– Het 3D U-Net model [? ]

• De DCT-implementatie in de CUDA-Samples [? ].
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Figuur 1: IPC-verschillen in hardware

U vindt de resultaten van dit experiment in Figure 1.
Deze figuur toont het relatieve verschil in IPC (relatief ten

opzichte van de noflush IPC: IPCf − IPCnf

IPCnf
·100%) voor

elke workload die hierboven is vermeld. We merken op dat
de meest veelbelovende workloads DCGAN en Gunrock
(op wegennetwerken) van de Cactus suite zijn, samen met
DCT van de CUDA-Samples.

Echter, sampling-methoden zoals Sieve [? ] vertrou-
wen op het gewicht van een kernel; d.w.z. het aantal in-
structies in die kernel ten opzichte van het totale aantal
instructies in de workload. Bovendien worden voor elke
cluster die door dergelijke methoden wordt berekend, de
gewichten van de kernels in die cluster opgeteld om het ge-
wicht van het cluster te krijgen. Dat clustergewicht wordt
dan gebruikt bij het generaliseren van de resultaten naar
de volledige workload; d.w.z. er wordt een gewogen gemid-
delde genomen. Wanneer we deze gewichten in aanmerking
nemen, krijgen we een ander resultaat.

In Figure 2 ziet u de gewogen IPC-verschillen voor
elke workload. Voor elke workload hebben we alle kernel-
oproepen geïdentificeerd met minstens 5% (resp. 10%, 15%
en 20%) verschil in IPC. De gewichten van al die kernels
werden opgeteld, wat de hoogte van de balkjes in de grafiek
bepaalt. Bijvoorbeeld, 3D-UNet heeft kernels ter waarde
van ongeveer 10% van de workload met een IPC-verschil
tussen 15% en 20%.

Met behulp van deze figuur krijgen we een iets ander
beeld van de getroffen workloads. In de rest van dit artikel
zullen we ons voornamelijk richten op de DCT- en 3D-
UNet-workloads.
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Figuur 2: Gewogen IPC-verschillen in hardware

2.1. Hergebruik
Een factor die nogal belangrijk zal blijken te zijn, is

hoeveel data er tussen kernels wordt hergebruikt. We zul-
len ons voornamelijk richten op het voorwaartse dataher-
gebruik; d.w.z. de data die door een kernel wordt gebruikt,
en vervolgens opnieuw wordt gebruikt door de volgende.
Voor een kernel ki definiëren we het voorwaartse dataher-
gebruik (forward reuse) fwdi als:

fwdi = |Mi ∩ Mi+1|
|Mi|

(1)

Hier is Mi de footprint van de kernel ki (de verzameling
unieke geheugenadressen).

In Figure 3 hebben we het voorwaartse datahergebruik
gevisualiseerd voor twee workloads. De eerste (Figure 3a)
is de DCT-implementatie die we al vermeldden, en de
tweede is de recursiveGaussian-implementatie uit de CUDA
SDK [? ] (Figure 3b).

Zoals u kan zien, wordt bij DCT er veel data herge-
bruikt tussen kernels (consistent 100%). Aan de andere
kant, de recursiveGaussian-workload stopt rond de 50%.
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Figuur 3: Hergebruik bij DCT en recursiveGaussian

3. Het koudestart-probleem in Accel-Sim

Nadat we de workloads in hardware hadden geprofi-
leerd, gingen we over tot het simuleren ervan in Accel-
Sim [? ]. Accel-Sim is een zeer flexibele simulator, die het
mogelijk maakt om een breed scala aan hardwareplatfor-
men te simuleren. De basis van Accel-Sim is de GPGPU-
Sim-simulator [? ], die een cycle-accurate simulator is.

Voordat we de resultaten bespreken, eerst een woordje
uitleg over de simulatoropstelling. We gebruikten de (vooraf
geteste) NVIDIA GeForce RTX3070-configuratie. Enkele
van de interessantere configuratieparameters worden ge-
toond in Figure 4.

Configuration parameter Value
L2 cache size 4 MB
Number of sets in L2 cache 64
L2 cache block size 128 B
L2 cache associativity 16
Number of memory controllers 16
Number of SMs 46
L2 Latency 187 cycles
DRAM Latency 254 cycles

Figuur 4: Configuratie-parameters bij de simulatie

We hebben elke workload opnieuw gesimuleerd, zoals
we dat in hardware deden (zowel flush, als noflush). Accel-
Sim laat ons toe om de caches te legen tussen kernel-
oproepen, door de --flush-l1 --flush-l2 argumenten
te gebruiken.

We besloten om onze experimenten te beperken tot de
DCT en 3D-UNet workloads, omdat die het meest veelbe-
lovend waren in hardware. Een andere workload die veel-
belovend was, was de OceanFFT-workload uit de CUDA
SDK. We hebben elke workload beperkt tot 130 kernels
(wat enkel een limiet is voor de 3D-UNet-workload), om
de simulaties haalbaar te houden.
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Figuur 5: Gewogen gesimuleerde IPC-verschillen

De resultaten van dit experiment kan u terugvinden in
Figure 5. Net zoals in hardware, hebben we de gewogen
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IPC-verschillen voor elke workload berekend.
Uit deze figuur kunnen we concluderen dat het koudestart-

probleem veel minder ernstig is in de simulator dan in
hardware. We veronderstellen dat dit komt doordat de si-
mulator een geïdealiseerde versie van de hardware is. Som-
mige details zijn mogelijk verloren gegaan, wat op zijn
beurt het koudestart-probleem zou kunnen hebben ver-
zwakt.

3.1. OceanFFT
OceanFFT is een workload met een interessante eigen-

schap. Zoals u kan zien in Figure 6, zijn de IPC-waarden
hoger wanneer we de caches legen.

Index IPC (flushing) IPC (no flushing) Forward Reuse (%)
1 2482.26 2487.96 12.50%
2 640.58 439.84 50.00%
3 1401.63 1397.86 0.00%
4 683.88 684.10 25.00%
5 1161.11 1160.73 n/a

Figuur 6: IPC-waarden voor OceanFFT

Dit is iets wat we niet zouden verwachten; we verwach-
ten dat de caches de uitvoering versnellen, niet vertra-
gen. De kernel die het meest wordt beïnvloed door het
koudestart-probleem is de tweede, die ongeveer 31% ver-
schil ondervindt.

We veronderstellen dat deze kernel sneller is met ge-
leegde caches omdat hij slechts een klein deel van de ge-
gevens van de vorige kernel hergebruikt. De eerste kernel
heeft een footprint van 33.5 miljoen geheugen-adressen,
waarvan de tweede er slechts 4 miljoen hergebruikt (onge-
veer 12.5%).

Wanneer er een groot aantal lijnen in de caches dirty
zijn, kan dit veel write-backs veroorzaken. Dit kan de
geheugen-pijplijn vertragen, waardoor de processors stag-
neren, wat de IPC verlaagt.

4. Inperkingen

We hebben een aantal oplossingen bedacht om het koudestart-
probleem in Accel-Sim in te perken:

• Perfecte opwarming: een naïeve aanpak zou zijn
om alle voorafgaande kernels te simuleren, waardoor
de caches opgewarmd worden. Dit gaat echter recht-
streeks in tegen het idee van sampling, en vertraagt
de simulatie aanzienlijk.

• Geheugen-opwarming: door enkel de geheugen-
operaties van de voorafgaande kernels te simuleren,
kunnen we de caches opwarmen. Dit is een snellere
aanpak dan de vorige, die er nog steeds in slaagt om
de caches op te warmen. Bovendien beperken we ons
tot de meest recente kernels, omdat we verwachten
dat deze het grootste effect zullen hebben, vanwege
de temporal locality.

• Correctiefactor: door gebruik te maken van uit-
voer van zowel trace als simulatie, poogden we een
correctiefactor te berekenen. Deze correctiefactor
bleek in staat te zijn om de nauwkeurigheid van zeer
onnauwkeurige kernels te verhogen, ten koste van een
iets lagere gemiddelde nauwkeurigheid.

4.1. Geheugen-opwarming
Met behulp van een aangepaste versie van de Accel-

Sim tracing-tool, waren we in staat om een extra trace
te genereren voor elke kernel. Deze trace bevat enkel de
geheugen-instructies, die kunnen worden gebruikt om de
caches snel op te warmen.

Uit de DCT-workload hebben we vier kernels gehaald
die veel lijden van het koudestart-probleem. Op deze ker-
nels hebben we de simulatie uitgevoerd met en zonder de
geheugen-opwarming. We hebben deze resultaten ook ver-
geleken met de perfecte opwarming (waarbij elke enkele
voorafgaande instructie wordt gesimuleerd), en de volle-
dige geheugen-opwarming (waarbij alle geheugen-instructies
van alle voorafgaande kernels worden gesimuleerd).

We kunnen twee grote observaties maken uit Figure 7:

1. Een enkele kernel-opwarming is meestal meer dan ge-
noeg om de caches op te warmen; de nauwkeurigheid
van alle kernels steeg tot minstens 97%.

2. Door enkel geheugen-instructies uit te voeren, is er
nog steeds een verschil met de perfecte nauwkeu-
righeid. We veronderstellen dat dit komt door de
herordening van instructies: aangezien tussentijdse
instructies (bv. ALU-instructies) worden verwijderd
uit de traces, kunnen sommige geheugen-instructies
worden herordend. Dit heeft een verschillende staat
van de caches als gevolg, wat de resultaten van de
simulator kan beïnvloeden.

4.2. Correctiefactor
We zijn erin geslaagd om een formule te bedenken die

het koudestart-probleem gedeeltelijk kan inperken, zonder
extra simulatie, gebaseerd op de volgende observaties:

• We kunnen een bovengrens schatten voor de impact
van het koudestart-probleem door te kijken naar het
aantal cold misses. Een deel van deze missers is te
wijten aan het koudestart-probleem, terwijl het an-
dere deel inherent is aan de workload.

• Het deel van de cold misses dat te wijten is aan het
koudestart-probleem, is evenredig met de forward
reuse. Enkel herhaalde toegangen kunnen worden
versneld door caches, dus dit zijn de enige die door
het koudestart-probleem kunnen worden beïnvloed.

• Meerdere geheugenverzoeken kunnen parallel wor-
den bediend door de DRAM-controllers. Hierdoor
moeten we rekening houden met de bezetting van de
geheugencontroller.
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Figuur 7: Geheugen-opwarming bij DCT

• Het aantal verloren cycli als gevolg van het koudestart-
probleem is evenredig met het verschil tussen de DRAM
latency en de L2 latency.

Op basis van deze observaties hebben we de volgende
formule opgesteld4:

IPC = insn

cyclesf − ∆ (2)

∆ = accesses

controllers · line
· fwdi−1 · (DRAM − L2) (3)

Hierbij is:

• IPC de gecorrigeerde IPC-waarde;

• insn de hoeveelheid dynamisch uitgevoerde instruc-
ties;

• cyclesf het aantal cycli dat de kernel nodig heeft om
uit te voeren;

• ∆ de correctiefactor;

• accesses de hoeveelheid unique geheugenverzoeken
(een bovengrens voor het aantal cold misses);

• controllers het aantal geheugen-controllers (gewo-
gen op hun bezetting);

• line de grootte van een lijn in de cache;

• fwdi−1 de forward reuse van de vorige kernel; en

• DRAM en L2 zijn de DRAM en L2 latency.

4.3. Vergelijking
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Figuur 8: Vergelijking van strategieën

In Figure 8 hebben we de verschillende strategieën met
elkaar vergeleken. Zoals u kan zien, zijn beide strate-
gieën in staat om de meest getroffen kernels te verbete-
ren. De correctiefactor is echter minder nauwkeurig dan
de geheugen-opwarming in het gemiddelde geval. De meest
veelbelovende optie is de geheugen-opwarming, die in staat
is om de meest getroffen kernels te verbeteren, zonder een
significante computationele kost.

4Deze formule zal niet werken voor OceanFFT, aangezien ze het
totaal aantal cycli verminderd.
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5. Conclusie

In dit artikel hebben we de impact van het koudestart-
probleem op GPU-workloads gemeten. We zijn begonnen
met het analyseren van de impact in hardware, waarbij we
hebben vastgesteld dat het een probleem is voor een aan-
tal workloads. We hebben stilgestaan bij het belang van
forward reuse, en zijn invloed op het koudestart-probleem.

Daarna zijn we overgegaan tot het simuleren van de
workloads in Accel-Sim. We hebben gezien dat het koudestart-
probleem veel minder ernstig is in de simulator dan in
hardware, maar dat het nog steeds aanwezig is. Een on-
verwacht resultaat was de OceanFFT-workload, die sneller
liep met geleegde caches.

Tenslotte hebben we enkele strategieën voor de inper-
king onderzocht. De meest veelbelovende hiervan is geba-
seerd op extra simulatie, en kunstmatige opwarming van
de caches. Deze methode slaagde erin de nauwkeurigheid
drastisch te verbeteren, zonder een significante computa-
tionele kost. De andere weg die we hebben verkend, was
een correctiefactor, gebaseerd op het aantal cold misses en
de mate van datahergebruik. Deze methode was in staat
om de getroffen kernels te elimineren, maar ten koste van
een iets lagere gemiddelde nauwkeurigheid.
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1. INTRODUCTION

1.1. GPUs
Graphics Processing Units (or GPUs for short), are specialized electronic circuits (or chips), originally
designed to accelerate computer graphics. In the modern day, these chips are most known in their
standalone form: as a separate card that can be plugged into a computer’s motherboard. However,
they are also often integrated into CPUs, as is the case with Intel’s integrated GPUs, or AMD’s
APUs.

The history of GPUs goes back to 1968, when the Evans and Sutherland Computer Corporation
was founded [1]. This company built special-purpose 3D graphics hardware, which was mostly used
in flight simulators. The hardware they made took several racks, and was extremely expensive.

The advent of 3D video gaming consoles, around 1994, brought about the era of mass-market 3D
gaming. This led to the founding of a lot of companies, all focused on bringing 2.5D and 3D graphics
hardware to PCs. One of these companies was NVIDIA, which was founded in 1993.

They released the GeForce 256 in 1999, which is commonly regarded as the first “real” GPU. Up
to this point, the vertex processing (transforming 3D data into 2D coordinates for the screen), was
done by the CPU, which was not built for this task. The actual rendering (computing lighting and
shading) was already done by the GPU. The GeForce 256 allowed offloading the vertex processing
to the GPU as well, allowing higher geometric complexity. At this point, computations were still
done in fixed-function pipelines, which were hardwired to perform specific tasks.

This would change with the introduction of the GeForce 3 (also known as the NV20) GPU in 2001.
It introduced programmable vertex shaders, where the vertex processing stage could be programmed
by the user. In the following year, GeForce FX introduced programmable fragment shaders, allowing
the user to take full control of the rendering pipeline.

At this point, GPUs were already very powerful, allowing for a lot of parallel computations to be
done. The GeForce 6, for example, had a peak performance of 108 GFLOPS (billion floating-point
operations per second). This dwarfed the performance of CPUs, which were only capable of a few
GFLOPS at the time. The flexibility of the pipeline allowed for a lot of different applications to
be run on the GPU, making it a very attractive platform for scientific computing. Despite this,
programming for GPUs was still extremely challenging, as both in- and output were very restrictive.
Problems had to be translated to a set of vertices, which were then rendered, and the results had to
be read back from the framebuffer.

2006 saw the introduction of the streaming multiprocessor (SM), a piece of hardware that was used
to run both vertex and fragment shaders. Additionally, these SMs could also run compute shaders,
which allowed users to run code on the GPU, independent of the graphics pipeline.

This grew into the CUDA (Compute Unified Device Architecture) platform [2, 3], which was
introduced in 2007. CUDA allows users to write code in C, which is then compiled to run on the
GPU. The full CUDA software stack consists of three main elements:

• The CUDA hardware driver, which is responsible for managing the GPU and scheduling work.

• The CUDA API and its associated runtime. The API is an extension to the C programming
language.

• Mathematical libraries, optimized to be run on GPUs.

We will focus mostly on the compute capabilities of GPUs (specifically newer generations of
NVIDIA GPUs), as they are the most relevant to our research. The typical GPU uses a two-step
compilation process:

1



1. High-level code is compiled to an intermediate representation, which is defined by the vendor.
Often, this intermediate representation is referred to as the virtual Instruction Set Architecture
(vISA). For NVIDIA GPUs, this vISA is called PTX (Parallel Thread Execution). The PTX
format is thoroughly documented, and remains relatively stable across GPU generations, which
makes it a good target for simulators.

2. The vISA code is compiled to the actual hardware instructions, referred to as the machine
Instruction Set Architecture (mISA). This just-in-time compilation step is done at runtime.
For NVIDIA GPUs, this mISA is called SASS (Source and Assembly). Compared to the
PTX format, SASS is very poorly documented, and undergoes changes with every new GPU
generation.

Every year, more and more AI and machine learning papers are published [4]. Many of these
machine learning algorithms rely on GPU computations to train their models, creating a growing
need for more and faster GPUs. Innovations to GPU hardware often require changing the micro-
architecture. These changes require verification to ensure that they are, in fact, improvements.
However, the creation of a new, physical GPU is very costly and time-consuming. To avoid this
overhead and allow for a faster iteration cycle, simulation is used.

1.2. GPU Simulation
The main idea behind simulation is to model the behavior of a system, and then run this model on
a computer. This allows for the system to be tested in a controlled environment, without the need
for the actual hardware. This is especially useful for GPUs, as the hardware is very expensive, and
the development cycle is very long.

A good (architectural) simulator should be flexible, to allow the end-user to make drastic changes
to the hardware architecture, without excessive effort. That being said, an accurate model is very
hard to build. Two factors hinder us in this regard:

• The desire for increased abstraction; many models are kept at a high level of abstraction, al-
lowing for easier understanding. However, the hidden details can make the model less accurate.

• Most hardware implementations are proprietary, i.e. the actual details are not publicly known.

This means that many simulators used in academia suffer a hit on their accuracy.
Most GPU simulators are cycle-level, meaning that they simulate the hardware at the clock cycle

level. Some contemporary examples are Barra [5], GPUOcelot [6], Multi2Sim [7], gem5 [8], GPGPU-
Sim [9], and its derivative Accel-Sim [10].

As Jain et al. [11] point out, the choice of which ISA to simulate can have an impact on the
accuracy of the simulation results. They compared the accuracy of simulating at the PTX level
to simulating at the SASS level when using the GPGPU-Sim simulator. From the workloads they
analyzed, most tend to have a better accuracy on the mISA level.

When simulating SASS code, GPGPU-Sim translates the instructions to a new format, called
PTXPlus. This PTXPlus format is a 1:1 representation of the GT200 SASS code, but translated to
resemble PTX in syntax.

1.3. Improving simulation speed
Simulation is not without its drawbacks. The main issue is that simulation comes with a very large
overhead compared to running algorithms on the actual hardware. This overhead is so large that
applications that would take only about an hour on real hardware could easily take upwards of
a century [12]. Additionally, the accuracy of the simulation is often lower than that of the real
hardware.

Some research has gone into improving the speed of GPU simulation. As most GPU workloads
consist of a large number of kernels, sampling a subset of these kernels can be used to speed up the
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simulation. Techniques like Principal Kernel Analysis [12] and Sieve [13] have been developed to
identify which kernels to simulate, and how to generalize the results.

This gives us the general outline of the simulation process:

1. Profile the workload on real hardware, to both gather performance numbers and create instruction-
level traces. For this, we will use NVIDIA’s Nsight Compute [14] and NVBit [15].

2. Use these performance numbers, together with a sampling method, to identify which kernels
to simulate.

3. Simulate the traces of these selected kernels on the simulator, gathering performance numbers.
Our simulator of choice is Accel-Sim [10].

4. Use these performance numbers to predict the performance of the entire workload.

However, this methodology of simulation can cause another drop in the accuracy of the simulation.
The performance of a kernel can be influenced by the kernels that run before and after it. In this
case, we will focus on the cache state of the GPU.

1.4. The cold-start problem
The cold-start problem is a problem that arises due to sampling, both in CPU and GPU.1 Each
kernel modifies the state of the caches by executing memory instructions (e.g. loads and stores).
When we sample the workload to select only a subset of the kernels, there is a large chance that
we will choose only intermittent kernels. This means that the state of the caches between kernel
invocations will not reflect the actual hardware state.

Suppose a workload consists of four consecutive kernels; A, B, C, and D. If kernel A were to be
an initializing kernel, readying data for the other kernels, then it might also warm up the caches,
filling them with data. This means that kernel B, which might reuse a lot of that data, might not
suffer the latency of its memory instructions, as it would only have to fetch the data from the cache
and not DRAM. However, if we were to only sample kernel B, each cache hit might turn into a miss,
drastically reducing the IPC of the kernel.

This problem is known as the cold-start problem, and it can have a significant impact on the
accuracy of the simulation. It also gives us our research question: how big is the impact of the
cold-start problem (both in hardware and simulation), and can we mitigate it?

1.4.1. Quantifying
In Chapter 4, we will quantify the cold-start problem in hardware. We will do this by running a set
of benchmarks on real hardware, and then simulating a subset of these (the most promising ones).
The benchmarks range from machine learning inference to graph traversal and molecular simulation.
Each of these benchmarks is run twice; once normally, and once with a forced cold start. We force
the cold starts by flushing the caches between every pair of kernels.

By doing this, we show that the cold-start problem exists in GPU hardware, and that it can have
a significant impact on the performance of the workload. We also look at the impact of the cold-
start problem when taking into account each kernel’s weight (i.e. what portion of the workload it
represents). Additionally, we found that the cold-start problem is tied to the degree of inter-kernel
data reuse, which we formalize in Section 4.3. From this data, we select the following workloads:

• DCT and OceanFFT, from the CUDA SDK; and

• 3D-UNet inference, a machine learning benchmark from MLPerf [16].

1As we focus on GPU simulation, we will refer to units of execution as kernels. In CPU simulation, these might be
functions or basic blocks.
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These are selected based both on how much they were impacted by the cold-start problem, and by
their feasible runtime in the simulator (for 3D-UNet we limited the execution to the first 130 kernels).

After profiling using the NVBit tool that comes with Accel-Sim, we will simulate these workloads,
analyzing the results in Chapter 5. Each workload will be run twice again, so that we can compare
the performance impact of the cold-start problem on these workloads. The main conclusion will be
that the cold-start problem does exist in the simulator as well, albeit with a very different impact.
Overall, the simulator will suffer less from the cold-start problem than the hardware, but the impact
will still be noticeable.

1.4.2. Mitigating
After quantifying the cold-start problem, we will look at ways to mitigate it. Chapter 6 will focus
on three avenues we’ve looked into:

Cache warming: in order to force the cache state to be accurate, we can simulate each preceding
kernel. However, this is not a feasible solution, as it will increase the simulation time by a lot.
This is what we tried to avoid by using sampling.

Selected simulation: only the kernels directly before a selected kernel will have a significant impact
on the cache state. Additionally, only the memory instructions do actually modify the cache
state. From these two observations, we will simulate only the memory instructions of a low
number of preceding kernels. The main conclusion here will be that simulating the memory
instructions of a single preceding kernel will give us a very high accuracy (often up to 99%) at
a rather low computational cost.

Correction factors: using certain factors we can compute a factor to correct the performance num-
bers of a cold-started kernel. The main idea will be to find a subtractive factor for the number
of cycles. This approach will prove to also yield good results, but will be slightly less accurate
than simulating memory instructions for a single additional kernel.

1.5. Contributions
In this thesis, we will quantify the cold-start problem in GPU hardware and simulation. We will
show that the cold-start problem exists in both hardware and simulation, and that it can have a
significant impact on the performance of a workload. We will also show that this problem is tied
to the degree of inter-kernel data reuse. Additionally, we will show that the cold-start problem is
less severe in simulation than in hardware. Finally, we will look into ways to mitigate the cold-start
problem, exploring three different avenues. The first avenue, simulating all preceding kernels, will be
discarded as it is not feasible, especially for larger workloads. The second avenue, simulating only
the memory instructions of a single preceding kernel, will be shown to give a very high accuracy at
a low computational cost. The third avenue, using correction factors, will be shown to be viable as
well, having a slightly lower accuracy to the second avenue, but at a lower computational cost.
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2. LITERATURE REVIEW

The topic of GPU simulation has been studied extensively, albeit not as extensively as CPU simu-
lation. Before continuing with the cold-start problem, we will shortly discuss the current state of
GPU simulation. The three main papers this thesis is based on are Accel-Sim [10], Principal Kernel
Analysis [12], and Sieve [13]. The first of these provides the simulator we use, while the latter two
provide the kernel sampling techniques that are commonly used to speed up simulation.

2.1. GPU Simulation
As outlined in the Accel-Sim paper [10], most of the ISA and architecture changes in GPU innovation
are usually closed off by the industry. This makes it harder for research to keep up with industry
changes.

The proposed simulator is Accel-Sim, which is based on the older GPGPU-Sim simulator [9]. It
consists of four main components:

1. The flexible frontend;

2. A very flexible and detailed performance model;

3. A correlation generation tool, which can be used to expand the simulator to newer GPU
architectures; and

4. A configuration tuner based on micro-benchmarks, which uses the correlation generation tool
to tune the simulator.

2.1.1. Accel-Sim Frontend
An important improvement which Accel-Sim brings, is the very flexible frontend. The existing
GPGPU-Sim is largely limited to virtual ISA (vISA) execution-driven simulation, using PTX (parallel
thread execution) instructions. Accel-Sim improves upon this by adding support for trace-driven
machine ISA (mISA) simulation, which uses the actual SASS (source and assembly) code.

In trace-driven mode, the simulator reads the mISA trace and converts it into the internal ISA-
independent representation. This representation has a one-to-one correspondence with SASS instruc-
tions, where the active mask and memory addresses are embedded in the trace itself. Conversely,
the execution-driven mode requires the computation of the active mask and memory addresses at
runtime, which is done by emulation of the PTX code. Finally, another benefit of the mISA is that
it includes the actual register allocation, while the vISA assumes an infinite amount of registers.

2.1.2. Accel-Sim Performance Model
Accel-Sim’s performance model attempts to mimic actual GPU hardware as closely as possible. To
this end, it is structured in a number of streaming multiprocessors (SMs), each of which is composed
of a number of warp schedulers. Each of these schedulers has an associated register file and is in
turn composed of a number of execution units.

The combination of a warp scheduler with its register file and execution units is called a sub-core.
These only share an instruction cache and memory subsystem.

As with the frontend, the performance model is also very flexible. It can simulate either a unified or
split L1 Data cache (L1D), as the device driver can configure the cache at runtime. In many modern
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workloads, an adaptive cache is used. This means that if a kernel does not use shared memory, all
on-chip storage is used for the L1D cache. Additionally, this flexible cache model supports multiple
cache designs: throughput-oriented, banked, and sectored; which allows for high-accuracy simulation.

Importantly, the simulator also needs to model the CPU-to-GPU memory copy engine. Each
DRAM access has to pass through the L2 cache, changing cache state.

Finally, the performance model also includes support for domain-specific process pipelines. Ex-
tending the simulator with these pipelines (e.g. Tensor Cores) requires the addition of some config
files. However, if the user wishes to also support the PTX simulation of these pipelines, they will
need to add emulation code in the GPGPU-Sim implementation.

2.1.3. Extension and Verification
The final two components, the correlation generation tool and the configuration tuner, are not only
used to extend the simulator to newer architectures, but also to verify the simulator’s accuracy.

Firstly, the tuner uses micro-benchmarks to tune the simulator; each of these micro-benchmarks
can be used to discover non-public configuration parameters, including:

• It can pinpoint changes in memory latency and bandwidth (both for L1 cache, L2 cache and
shared memory);

• It can detect the cache write policy and its configuration (associativity, line size, etc.).

After running these micro-benchmarks, the tuner reads the results and provides a configuration
file which can be fed to the performance model. Some parameters cannot be determined by the
benchmarks themselves, like warp scheduling policy, memory scheduling, and some L2 cache param-
eters (interleaving and hash function). To determine these, the tuner will attempt to simulate each
possible combination on a set of memory bandwidth micro-benchmarks. The configuration with the
highest average hardware correlation is then picked to be the correct one.

The other component, the correlation generation tool, can be used to generate targeted information
on inaccuracies. This information is important because the tuner might not be able to detect and/or
capture drastic architectural changes. These changes often require manual intervention.

2.1.4. Accel-Sim Conclusion
Accel-Sim is a very flexible and detailed simulator, which can be used to simulate both vISA and
mISA code. It is also able to simulate a wide range of cache designs, and can be extended to support
domain-specific pipelines. The correlation generation tool and configuration tuner are used to verify
the simulator’s accuracy, and to extend it to newer architectures.

The current version can simulate up to a speed of 12 500 warp instructions per second [10], which
still improves upon the previous GPGPU-Sim version. Half of this speedup comes from the trace-
driven mode, which avoids overhead of functional execution. The user can also set kernel-based
checkpoints to avoid simulation of non-interesting regions.

The other half of the speedup comes from a simulation optimization strategy called simulation-
gating, which provides a tradeoff between event-driven and cycle-driven simulation. During simu-
lation, it is quite often the case to have thousands of in-flight memory requests from hundreds of
active threads. This means that each cycle, there is always something to simulate. However, ticking
every component every cycle can be expensive, especially if there are quite a few empty components
(e.g. cores, execution units, caches, and DRAM channels). To avoid this, the simulator only ticks
the active components.

2.2. Kernel Sampling
Simulation has a lot of benefits; like the inherently configurable design, the flexibility, and the ability
to reconfigure hardware to analyze model changes, but it also has the downside of its inherent
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enormous overhead. The authors of the PKA paper [12] show that workloads which would take
seconds on real hardware, could take upwards of a century on a simulator. This drawback means
that each simulation platform must limit the number of instructions.

Many approaches attempt to restrict the workload and/or platform to speed up simulation. To
this end, workloads could be scaled down; which would limit the applicability to extremely short
runtimes. Another option would be to simulate only the first few billion instructions of a larger,
scaled workload. However, this option limits the horizon of the simulation, often only simulating
the warmup-phase of the program. A third option would be to scale the GPU itself down, but this
would force the workload to adapt to the scaled-down hardware. Finally, neither of these options
have really been validated against scaled workloads.

To come up with a better solution, the authors turned their attention to the solutions employed
when simulating CPUs. For CPU workloads, the simulation often focuses on selecting a subset of
the basic blocks in each thread. However, this does not translate well to GPU simulation, as the
control-flow graphs (CFGs) each GPU thread executes are usually small and trivial compared to
CPU CFGs. To really make a difference in simulation time, you would need to curtail the number
of threads, rather than the number of basic blocks per thread.

2.2.1. Principal Kernel Analysis
To select a subset of the kernels to simulate (and thus limit the number of threads), the authors
propose a new technique called Principal Kernel Analysis (PKA). This technique is based on the
following three observations:

• Even though a workload can contain many kernel instances, all of them can be characterized
and grouped based on a small number of architecture-independent metrics.

• Heavy-duty detailed profiling of an entire workload can very easily take an extreme amount of
time. To combat this, we can do the full profiling on a subset of kernels, and use lightweight
profiling on the rest. Finally, statistical techniques can be used to generalize the results from
the subset to the entire workload, allowing us to cluster all kernels without spending too much
time on profiling.

• During the lifetime of a kernel, its IPC tends to stabilize to a value representative for the entire
kernel. This allows us to cut the execution short, and still get a good estimate of the kernel’s
final performance values.

The PKA technique has two big steps: firstly Principal Kernel Selection (PKS), and secondly
Principal Kernel Projection (PKP). During this first step, a workload is profiled, after which all
profiling results (both heavy-duty and lightweight) are used to cluster all kernel invocations. From
each cluster, a representative kernel is selected to be simulated. The second step, PKP, then uses the
third observation above to stop the simulation once the deviation in IPC is below a certain threshold.
This clear approach gives PKA its four main characteristics:

• Scalable: the two-level profiling assures that a reasonable amount of time is spent on pre-
processing, after which the selection algorithm can choose which kernels to simulate. By
simulating a limited number of kernels, the simulation time is drastically reduced.

• Automatic: PKA requires only very few inputs: profiling results (which can be directly
obtained from the workload itself); a maximum error bound for the PKS step; and finally, a
confidence interval for the PKP step.

• Tunable: the parameters outlined in the previous point allow the user to tune the tradeoff
between simulation time and accuracy.

• Verification: PKA has been verified against silicon, which is not true for some other sampling
techniques.
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2.2.2. Principal Kernel Selection
During the profiling phase, all metrics gathered are micro-architecture-independent. This means that
they depend only on the workload, not the GPU being profiled. By making sure that the metrics
are independent, we can avoid discrepancies (similar to the differences between x86 instructions and
micro-ops when simlating CPUs). The metrics used are:

• Coalesced global loads and stores • Thread global atomics
• Coalesced local loads • Instruction count
• Thread global loads and stores • Divergence efficiency
• Thread local loads • Thread block count
• Thread shared loads and stores

After gathering results from the heavy-duty profiler (if needed, for only a limited number of
kernels), principal component analysis (PCA) is used to reduce the dimensionality of the data. This
makes sure that we can avoid the curse of dimensionality, as the principal dimensions will have the
highest variability. Once we have the smaller dataset, we use k-means to cluster the data. The
k-means algorithm was chosen partially because of explain-ability, and partially because it can be
tuned with its factor k.

From each of the obtained clusters, a representative kernel invocation is selected. The authors have
tried three different methods of selection: random, first chronologically, and closest to cluster center.
The first option, random, caused inconsistent error rates, and is not recommended. The other two
options, however, showed negligible differences in error rates. In this case, the first chronologically
was picked, as this has certain benefits in practice (for both tracing and profiling).

If the workload is very large, it can be impractical to use heavy-duty profiling on all kernels. In
this case, we can use a two-level approach: profiling the first j kernels using the heavy-duty profiler,
while from the other n − j kernels only a subset of the metrics is gathered. We cluster the fully
profiled kernels using the PCA and k-means approach, while the others are mapped to the clusters
using either Stochastic Gradient Descent, Naive Bayes Gaussian, or Multi-layer Perceptron.

2.2.3. Principal Kernel Projection
While PKA solves the problem of the number of kernels, it does not address long-running ones.
To this end, the authors propose the Principal Kernel Projection (PKP). PKP is based on the
observation that, since each thread in the grid runs the same code, the code of a kernel usually has
only a few phases (largely due to their lifetime being shorter than a CPU thread). This means that
the IPC of a kernel usually stabilizes, even in very irregular applications (like graph processing).

PKP attempts to detect this stabilization by tracking two statistics about the IPC across the last
n cycles: the rolling average, and the deviation. One of the parameters to the PKA application
is the confidence interval for stabilization detection. From this parameter, a threshold value s is
computed. When the deviation drops below this threshold, the IPC is considered quasi-stable, and
the simulation can be stopped. A smaller value for s leads to higher accuracy at the cost of a longer
simulation time. According to the authors, a value of s = 0.25 should be fine.

2.3. Improving PKA
While PKA is a very powerful technique, leading to drastically lower simulation times while still
maintaining a high accuracy for most application, it is not perfect yet. The main issues with PKA,
as outlined in Sieve [13], are:

• Since the PKS phase assumes the same execution time for all invocations in a cluster, there is
a very large variability in cycle count.

• The heavy-duty profiling phase is very time-consuming. Using only the instruction count
(which can be obtained from the lightweight profiler) also leads to a high accuracy.
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• PKS also relies on a golden reference obtained from real hardware to select its representative
kernels. This implies that the final clustering is not micro-architecture-independent, since the
hardware platform ultimately decides the clustering. Sieve only uses the instruction count
to cluster the kernels, so the actual clusters and representatives will be micro-architecture
independent.

The Sieve technique improves upon both steps of the PKS phase. It attempts to speed up the pro-
filing step by only requiring a few easily-gathered metrics from the application to cluster the kernels.
These metrics (kernel name, invocation ID, and number of dynamically executed instructions) can be
obtained from the lightweight profiler, which reduces profiling time. This is a much lower one-time
cost than PKA requires, opening up many more applications that were prohibitively expensive to
profile using PKA .

2.3.1. Strata
To reduce the variability in cycle count, Sieve uses strata-based clustering. This allows for a better
representative kernel to be selected. Within each stratum, only instances (or invocations) of the same
kernel are present, while also keeping the amount of dynamically executed instructions as similar as
possible. The strata are organized in three tiers:

1. Tier 1: all instances in tier 1 have the exact same number of dynamic instructions; removing
all variability.

2. Tier 2: only a small amount of variability is allowed in tier 2, with a configurable maximum.

3. Tier 3: the remaining instances are placed in tier 3, where the variability is allowed to be
much larger.

In order to determine which tier a kernel invocation belongs to, the Coefficient of Variation CoV = σ

µ
(the ratio between standard deviation and mean instruction count) is used. A threshold θ can be
set by the user; where a lower θ implies less variability within the strata and higher accuracy at the
cost of a longer simulation time. The authors found that θ = 0.4 is a good compromise.

To improve the variability of tier 3, which allows for a lot of variability, Kernel Density Estimation
(KDE) is used. This allows to minimize the number of strata while also limiting the variability in
instruction count (using the same threshold θ).

Using this methodology, the authors found that Sieve was able to fit most kernel invocations from
the MLPerf [16] and Cactus [17] workloads into tiers 1 and 2.

2.3.2. Selection
When selecting a representative kernel, Sieve makes a decision based on the tier of the stratum:

1. Tier 1: in tier 1, all kernel invocations are identical, so the first chronologically is picked.

2. Tiers 2 and 3: in these tiers, the first chronological kernel with the most dominant cooperative
thread array (CTA) is selected. Using the CTA as a metric makes sure that the selected kernel
invocation occupies the hardware resources in the most representative way.

Additionally, a weight for each stratum is computed as wi = total instruction count of stratum i

total instruction count of workload
.

This ensures that each stratum is weighted according to its actual weight in the workload.

2.3.3. Performance Prediction
The final step in the Sieve technique is the performance prediction. After simulating the represen-
tative kernels and obtaining their performance numbers (e.g. IPC), these can be generalized per
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stratum. Computing or predicting the final IPC for the application is done by taking the weighted
harmonic mean of the IPC values from each stratum:

IPC = 1∑
stratum/cluster i

wi
IP Ci

2.4. Cold start in CPU simulation
This thesis will focus on the cold-start problem in GPU simulation. However, extensive research
has already been done on the cold-start problem in CPU simulation. We will shortly discuss some
results from this research, both regarding quantification and mitigation, as they might be useful in
the context of GPU simulation. Finally, we will look at one mitigation strategy in detail.

Both in GPU and CPU simulation, workloads are often too large to simulate in their entirety.
Whereas GPU simulations can take up to centuries, simulation of common CPU benchmarks takes
usually takes a few days or weeks [18]. This is still too long of a time to be practical, so researchers
have come up with sampling strategies to reduce the simulation time, just like with GPU simulation.

These sampled methodologies suffer from the cold start problem as well, as some hardware state
might be lost (e.g. caches, TLBs, branch predictors, etc.). Additionally, for many samples, this
warmup history is very long, as caches1 are typically rather large. This leads to proportionally long
warmup times.

From this, we can gather two main problems:

1. Selection: CPU benchmarks often have a lot of different phases, and all phases need to be
represented among the samples. This is not a problem we will look into, as it is covered by the
PKA and Sieve techniques.

2. Cold-start: the hardware state at the beginning of each sample might be lost. The main
cause here is the fact that a lot of instructions are never simulated, so they have not had a
chance to modify the micro-architectural state.

Regarding the cold-start problem, other works often identify three phases in the simulation:

Cold simulation: this is pure, functional simulation. Instructions are fast-forwarded and do not mod-
ify the micro-architectural state. This type of simulation is very fast, but does not contribute
to the final results obtained by simulation.

Warm simulation: a region of instructions before the sample is simulated. These instructions are
used to warm up the caches, TLBs, and branch predictors. Because more data needs to be
gathered, the simulation time is longer (about twice as long as cold simulation).

Hot simulation: the sample is simulated, gathering all performance metrics. This type of simulation
is very slow (almost ten times slower than warm simulation).

In [19], the simulation speeds of each of these phases are compared: cold simulation runs at about
7 MIPS (million instructions per second), warm simulation at about 3 MIPS, and hot simulation at
about 0.3 MIPS. To speed up simulation, we need to reduce the amount of instructions run under
warm and/or hot simulation. The number of instructions run under hot simulation can be reduced
by sampling, which requires simulating instructions under warm simulation.

2.4.1. Warmup strategies
The authors of [18] have identified a number of well-known strategies to reduce the warmup time:

• Cold scheme: this scheme performs no warmup at all, assuming all caches are cold at the
beginning of every sample.

1We will often refer to just caches, as these are most relevant to the research in this thesis, but this also includes
TLBs, branch predictors, and more.
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• Checkpoint: [20] this scheme saves the micro-architectural during profiling, and restores it
at the beginning of each sample. However, this requires a lot of disk space, as a lot of micro-
architectural variables have to be saved and restored. On the other hand, it does guarantee a
perfectly warmed up cache.

• Stitch: [21] this scheme attempts to approximate the micro-architectural state at the beginning
of a sample by taking into account the state at the end of the last sample, stitching them
together.

• Prime-xx%: [21] this scheme assumes that the first xx% instructions of the sample are
warmup, and only gathers performance data on the other instructions.

• The authors of [22] propose a combination of the Stitch and Prime-xx% schemes. In this
combined strategy, the hardware state at the beginning of the sample is assumed to be the
hardware state at the end of the previous sample, plus the changes made by the first xx%
instructions of the sample.

• Correction factor: [21, 23] using statistics and math, the number of cold misses due to the
cold-start problem is estimated.

• NSL: [24] no-state-loss determines which memory addresses are used by the sample. Using
this information, it checks memory instruction preceding the sample, keeping track of whether
they would overwrite the cache line for any memory address in the sample. This LRU (least-
recently-used) cache is then used to warm up the cache. Obviously, this scheme does not work
for branch predictors, and only works for caches (and TLBs) using the LRU eviction policy.

• MSE: [25] minimal subset estimation uses probability and a set of formulae to estimate the
start position of the warming region.

Two other methods, Memory Reference Reuse Latency (MRRL) [26] and Boundary Length Reuse
Latency (BLRL) [18], will be discussed more extensively below. Both are derivatives of the MSE
scheme.

From all these methods, only NSL, MSE, MRRL, and BRLR guarantee a nearly perfect hardware
state at a reasonable cost.

2.4.2. Memory reference reuse latency
The name of the method is a reference to the metric used: the memory reference reuse latency [26]
refers to the number of instructions between two consecutive references to the same memory location.
This metric is used to estimate the required length of the warmup phase, given a factor representing
the tradeoff between accuracy and simulation speed.

In general, MRRL works like this, using all instructions between two consecutive samples as the
pre-sample regions for the next sample:

1. The entire region, both pre-sample and sample, are divided into NB buckets, each having LB

contiguous instructions (this means a total of NB ∗ LB instructions are considered). These
buckets are indexed from 0 to NB − 1, with bucket 0 being at the start of the pre-sample
region. Additionally, these buckets are divided into NB,P pre-sample buckets and NB,S sample
buckets (NB = NB,P + NB,S). Finally, for each bucket i, a counter ci is initialized to 0.

2. For each memory reference in the region, its MRRL is calculated, and the relevant counter is
incremented. To determine which counter ci should be updated, the MRRL is (integer) divided
by LB (i = bMRRL

LB
c).

3. After all memory references have been processed, a histogram is created from the counters.
For each counter ci, a value pi = ci∑NB−1

j=0 cj

is computed. These values correspond to the
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probability that a memory reference has an MRRL in the range [i ∗ LB, (i + 1) ∗ LB). Due to
the temporal locality of memory references, we expect pi is higher for smaller i.

4. Using this histogram, we can compute the percentile K%, and its corresponding bucket k. This
means that K% of all memory references have an MRRL of at most k ∗ LB.

5. These k buckets are then selected as the warmup buckets, meaning that warm simulation is
started k ∗ LB instructions before the sample.

While this yields a very good estimate of the warmup region, it does forget about one issue:
when the MRRL behavior of the pre-sample and the sample do not match very well, it might be
suboptimal. Due to this mismatch in behavior, it could overestimate the warmup region, leading to
a longer simulation time. On the other hand, it could also underestimate the warmup region, leading
to lower accuracy than expected. To mitigate these issues, the BLRL scheme was proposed.

2.4.3. Boundary length reuse latency
BLRL [18] is a derivative of the MRRL scheme, keeping the same general workflow. Instead of using
each memory reference, like MRRL does, it only uses memory references whose MRRL crosses the
boundary between the pre-sample and the sample. This means that only the memory references that
need warming up are considered, which leads to a smaller warmup region.

Additionally, the BLRL scheme computes only takes into account the pre-sample reuse latency;
they subtract the reuse latency that is part of the sample. For example, if instruction i (part of
the sample), reuses a memory location that was last used by the pre-sample region, we compute
the pre-sample reuse latency as MRRL − (i − NB,P ∗ LB) (we subtract the number of instructions
since the beginning of the sample from the MRRL). Using these pre-sample reuse latencies, a similar
histogram is created, and normalized to the number of reuse latencies crossing the boundary.

This histogram is then, like MRRL, used to compute the percentile K%. In the same way, the
corresponding bucket count k is selected as the warmup region.

The authors note three key differences between MRRL and BLRL:

1. Instead of considering all memory references, BLRL only considers those which also appear in
the sample.

2. Instead of using all memory references in both pre-sample and sample, BLRL only considers
those crossing the boundary.

3. Instead of using the actual MRRL value, BLRL uses the pre-sample reuse latency (it only
counts latencies up to the border).

From an analysis of multiple CPU benchmarks, the authors found that BLRL is more accurate
in almost all cases, and very often features a shorter warmup phase. This means we get a better
accuracy at a lower cost, for almost all benchmarks.
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3. THE COLD-START PROBLEM

3.1. Caches
The cold-start problem is inherently tied to caches and similar structures. Caches are a hardware
component that is used to improve the performance of a computer system. They attempt to mitigate
the latency of accessing data from main memory (DRAM) by storing a subset of the data that
is recently accessed. Older research has shown that many applications exhibit temporal locality,
meaning that if a piece of data is accessed once, it is likely to be accessed again in the near future.
Caches exploit this property by storing recently accessed data in a small, fast memory that is closer
to the processor (in this case, the GPU) than the main memory.

When the GPU issues a memory request (often due to a load or store instruction), the cache
controller checks if the data is present in the cache. If it is, and the data is not stale, the cache
controller returns the data to the GPU, avoiding the expensive DRAM access. If the data is not
present in the cache, the cache controller must fetch the data from the main memory. Modern GPUs
have multiple levels of cache, each with their own size, latency, and other parameters. Often, the
caches are organized in a hierarchy, where closer caches (which have a lower latency), are smaller.
We will mainly focus on the last-level cache (LLC), which is the cache closest to the DRAM.

3.1.1. Cold Caches
Initially, the caches of a GPU are cold, meaning that they do not contain any data. This means that
the first time a new piece of data is accessed, it will not be present in the cache, and the GPU must
fetch it from DRAM. This causes a significant latency penalty, as the latency of accessing DRAM is
much higher than the latency of accessing the LLC. From then on, repeat accesses to the same data
will be much faster, as the data will be present in the cache.

The benefit of caches is that they can persist data between kernel invocations. This implies that
a kernel can “warm up” the caches by accessing all data that the next kernel might need.

In Figure 3.1, we see an example of two kernels, and how caching can improve performance. This
small example abstracts away of how the caches decide which cache line is used for which memory
address. The first kernel executes some memory instructions, which the second one builds upon. The
full “code” executed (we used a simplified representation of the memory instructions) is as follows:

1 ; Kernel 1:
2 ld 0x00AA ; performs a load
3 ld 0x11BB
4 st 0x00AA ; performs a store
5 st 0x22CC
6 ld 0x33DD
7

8 ; Kernel 2:
9 ld 0x33DD

10 ld 0x11BB
11 st 0x00AA

The figure shows for each instruction the cache state before and after the execution (if the cache
state changed). We can clearly see that, for kernel 1, the caches start out cold, but get warmed up
by the unique memory accesses (0x00AA, 0x11BB, 0x22CC, and 0x33DD). Because the cache couldn’t
supply us with the data, we call this a cache miss. More specifically, since we access a memory
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Kernel 1
0
1
2

dram
0
1
2 0x00AA

ld 0x00AA

0
1
2 0x00AA

dram
0
1
2

0x11BB
0x00AA

ld 0x11BB

0
1
2

0x11BB
0x00AA

cachest 0x00AA

0
1
2

0x11BB
0x00AA

dram
0
1
2

0x22CC
0x11BB
0x00AA

st 0x22CC

0
1
2

0x22CC
0x11BB
0x00AA

dram
0
1
2

0x22CC
0x33DD
0x00AA

ld 0x33DD evict

Kernel 2
0
1
2

0x22CC
0x33DD
0x00AA

cacheld 0x33DD

0
1
2

0x22CC
0x33DD
0x00AA

dram
0
1
2

0x22CC
0x11BB
0x00AA

ld 0x11BB evict

0
1
2

0x22CC
0x11BB
0x00AA

cachest 0x00AA

Figure 3.1.: Caches example

location that had not been accessed before, it is called a cold miss. Each cache miss causes a DRAM
access, costing us precious cycles. However, the repeat access of 0x00AA on line 4 (st 0x00AA) goes
only through the cache, speeding up the access.

Because we do not flush the caches between two kernel invocations in this example, kernel 2 can
benefit from the cache state that kernel 1 left behind. At this point, we have no cold misses anymore,
as all memory locations that are accessed have been accessed before. However, line 10 causes another
miss, as the cache line associated with 0x33DD was overwritten by the access of 0x11BB on line 9,
causing a conflict miss. These conflict misses occur when multiple memory locations are mapped to
the same cache line, and one of them is evicted from the cache.

These evictions are a normal part of cache operation. The controller will choose a line to remove
from the cache based on its eviction policy. Some common cache eviction policies are1:

LRU (Least Recently Used) The line that has not been accessed for the longest time is evicted.
This choice is based on the assumption that, if a line has not been accessed for a long time, it
is less likely to be accessed in the near future.

LFU (Least Frequently Used) The line that has been accessed the least amount of times is evicted.

FIFO (First In, First Out) The line that has been in the cache the longest is evicted.

RR (Random Replacement) A random line is evicted.

For simplicity, we will assume that all instructions are run serially, i.e. no two instructions are
issued at the same time. Additionally, we will assume that a cache hit takes 180 cycles, and a
DRAM access takes 250 cycles (which is close to what the simulator will use). From these numbers
we can compute how many cycles each kernel will take to execute. For kernel 1, we have 4 misses
and 1 hit, resulting in a total of 1180 cycles; while kernel 2 can be executed in 610 cycles.

1Cache eviction policies only have an effect when a memory location can be placed in one of multiple cache lines (the
cache has an associativity of at least 2). If a memory location can be placed in only one cache line, it has to replace
that specific cache line.
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3.2. The Problem
As we discussed in Section 2.2, most kernels in a workload won’t be simulated. This means that a
lot of intermittent kernels will never be run, which might impact the cache states. In effect, we can
assume that each kernel will be run with cold caches, as the kernels right before a kernel might not
have been run.

Kernel 2
0
1
2

dram
0
1
2

0x33DDld 0x33DD

0
1
2

0x33DD dram
0
1
2

0x11BBld 0x11BB evict

0
1
2

0x11BB dram
0
1
2

0x11BB
0x00AA

st 0x00AA

Figure 3.2.: Sampled example

In Figure 3.2, we revisit the same example, assuming that the sampling method only selected
kernel 2 to be simulated. Below is the code excerpt for kernel 2:

8 ; Kernel 2:
9 ld 0x33DD

10 ld 0x11BB
11 st 0x00AA

This means that kernel 1 was not run, and kernel 2 can not benefit from the cache state that
kernel 1 left behind. This causes all memory accesses to be cold misses, as the caches are cold.
Again, we can compute the number of cycles kernel 2 will take to execute. This time, we have 3
misses, resulting in a total of 750 cycles (taking into account our assumptions from before). This is
a significant increase in execution time compared to the 610 cycles we had before (about 23%).
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4. THE COLD-START PROBLEM IN
HARDWARE

4.1. Initial profiling
Firstly, we need to quantify and detect whether the cold-start problem exists in GPGPU hardware.
To this end, we have analyzed some workloads and benchmarks using the NVIDIA Nsight Com-
pute [14] tool. This tool allows us to control the caches during the execution of an application.
Additionally, we can gather detailed metrics, like IPC, for each kernel in the workload.

Each workload was profiled twice: once like it would run normally, and once with the caches
flushed between kernel invocations. Nsight Compute supports this option by using the --cache-
control=all argument. To keep the runtime in check, we limited the execution to 20 000 kernels
per workload. These experiments were run on an NVIDIA GeForce RTX 3080 [27]. This GPU has
68 SM cores, 6 MB of L2 cache.

After profiling, we attempted to match each profiled non-flushed kernel with its flushed counter-
part. This proved easier said than done, as the kernel IDs were not consistent between the two
profiles.

From this initial analysis, the most interesting workloads seemed to be PyTorch DCGAN [28] and
Gunrock [29] (on road traversal), from the Cactus [17] suite. Below is a full list of all analyzed
workloads:

• Gromacs [30] and LAMMPS [31] (with both rhodo (LMR) and colloid (LMC) inputs); two
molecular simulation workloads,

• Gunrock on both road (GRU) and social networks (GST),

• DCGAN, neural style transform (NST) [32], reinforcement learning (RFL), spatial transformer
(SPT) [33] and language translation (LGT) from PyTorch, and

• The following MLCommons benchmarks (from their MLPerf® Inference v2.0 collection):
– The ResNet50 model [34],
– Both MobileNet and ResNet34 variants of the SSD model,
– The Bidirectional Encoder Representations for Transformers (BERT) [35], and
– The 3D U-Net model [36]

• Four inputs to the 8x8 DCT implementation in the CUDA Samples (each labeled with their
respective input).

In Figure 4.1, you can see the relative IPC difference for each kernel in the Cactus and MLPerf
workloads. For the majority of workloads, the IPC difference is rather small (at most 10%). However,
for some of the more interesting workloads (like DCG, GRU, NST, and DCT), we can find IPC
differences of up to 70% for some kernels.

16



3d
-un

et ber
t

dcg gm
s gru gst lgt lm

c lm
r nst

res
net

50 rfl spt

ssd
-m

ob
ilen

et

ssd
-re

sne
t

Workload

0

10

20

30

40

50

60

70

Re
la

tiv
e

IP
C

di
ffe

re
nc

e
(%

)

IPC difference between flushing and not flushing per workload

cud
a1

cud
a2

gol
d1

gol
d2

Workload

0

5

10

15

20

Re
la

tiv
e

IP
C

di
ffe

re
nc

e
(%

)

IPC difference between flushing and not flushing per workload

Figure 4.1.: Relative IPC difference
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4.2. Weighting kernels
While this shows that the problem does exist in hardware, it might not relate to how modern
simulation is carried out. Modern techniques like Sieve [13] use clustering to select a subset of
kernels to simulate, generalizing the results to the entire workload. In these sampling techniques,
many kernels are clustered together based on characteristics. The process then selects a single
kernel from each cluster to simulate, using those results are representative for the entire cluster. To
combine the clusters and compute a final result, each cluster’s result is weighted by its instruction
count, relative to the full workload:

wkernel = kernel instruction count∑
kernel k∈ workload kernelk instruction count

wcluster =
∑

kernel k∈ cluster
wkernel

In order to get a better view of the impact of the cold start problem, we have also computed IPC
difference when each kernel is weighted by its instruction count.

dcg lm
r

res
net

50 lgt gru gst ber
t spt

ssd
-m

ob
ilen

et

ssd
-re

sne
t34

lm
c rfl

3d
-un

et gm
s nst

0

2

4

6

8

10

12

14

16

Aff
ec

te
d

pa
rt

of
th

e
wo

rk
lo

ad
(%

in
sn

)

Effect of flushing on workloads

≥ 5% difference in IPC
≥ 10% difference in IPC
≥ 15% difference in IPC
≥ 20% difference in IPC

Workload 5% difference 10% difference 15% difference 20% difference
dcg 0.81 % 0.12 % 0.03 % 0.02 %
lmr 0.52 % 0.01 % 0.00 % 0.00 %

resnet50 0.04 % 0.01 % 0.01 % 0.01 %
lgt 14.57 % 1.80 % 0.40 % 0.21 %
gru 16.11 % 1.93 % 0.07 % 0.07 %
gst 0.08 % 0.04 % 0.00 % 0.00 %
bert 0.00 % 0.00 % 0.00 % 0.00 %
spt 12.00 % 1.53 % 0.91 % 0.13 %

ssd-mobilenet 2.96 % 2.94 % 0.40 % 0.00 %
ssd-resnet34 0.07 % 0.00 % 0.00 % 0.00 %

lmc 0.17 % 0.01 % 0.01 % 0.01 %
rfl 6.01 % 1.10 % 0.36 % 0.25 %

3d-unet 10.84 % 10.75 % 10.73 % 0.00 %
gms 3.21 % 1.17 % 0.33 % 0.08 %
nst 0.26 % 0.04 % 0.01 % 0.01 %

Figure 4.2.: Weighted IPC differences for MLPerf and Cactus
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Figure 4.3.: Weighted IPC differences for DCT

In Figure 4.2, you can see the result of this analysis for the Cactus and MLPerf workloads. The
results for the DCT workload (with its same four input images) is shown in Figure 4.3. We have
set four thresholds for the relative IPC difference (5%, 10%, 15%, and 20%). For each of these
thresholds, we have summed up the weights of all kernels where the IPC difference is at least that
much. This means that e.g. for the GRU workload, approximately 16% of the entire workload suffers
from a difference of at least 5%.

From these figures, we end up with a different set of affected workloads. Most of the MLPerf
workloads only suffer slightly from the cold-start problem, with the only notable exception being the
3D U-Net workload. In the Cactus suite, we found language translation (LGT), spatial transformer
(SPT), reinforcement learning (RFL), and Gunrock (with road input, GRU) to be the most affected.
The real outlier here, however, is the DCT one. It consistently suffers from at least 20% relative IPC
difference, no matter the input.

4.3. Data reuse
We assume that the cold-start problem is more prevalent in workloads with high data reuse. To
verify this, we have analyzed the degree of inter-kernel data reuse in the DCT workload. For each
kernel, we have profiled all memory instructions and extracted the unique memory addresses.

In Figure 4.4, you can see the data reuse ratio for the DCT workload. We have analyzed both the
forward and backward data reuse for each kernel:

• Forward data reuse: the amount of unique memory addresses in kernel ki that are reused
by kernel ki+1 (as seen in Figure 4.4a); i.e.

fwdi = |footprint ki ∩ footprint ki+1|
|footprint ki|

(4.1)
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• Backward data reuse: the amount of unique memory addresses in kernel ki that are also
present in kernel ki−1 (as seen in Figure 4.4b); i.e.

bwdi = |footprint ki−1 ∩ footprint ki|
|footprint ki|

(4.2)

When looking at the DCT workload, most kernels have a very high degree of data reuse, both
backward and forward. As we analyzed before, this workload suffers heavily from the cold-start
problem (in hardware).

For contrast, we have also analyzed recursiveGaussian (from the CUDA SDK); as you can see
in Figure 4.5. Roughly half of the kernels hit 50% of data reuse (in either direction), while the other
half has a much lower degree of data reuse. This is also reflected in the IPC difference due to the
cold-start problem: only about 1.3% of the workload suffers from at least 5% IPC difference.

The notion of data reuse, more specifically forward data reuse, will be used in the final chapter,
when we discuss possible mitigations to the cold-start problem.
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Figure 4.4.: Inter-kernel data reuse in DCT
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Figure 4.5.: Inter-kernel data reuse in recursiveGaussian
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4.4. Hardware conclusion
From this, we can conclude that the cold-start problem does exist in hardware. Additionally, we
noticed that the problem changes severity when we take each relative kernel’s instruction count into
account, giving us other workloads to focus on. Finally, we suspected that workloads with high
inter-kernel data reuse would suffer more from the cold-start problem. This was confirmed by the
DCT workload, as we have shown in Figure 4.4.

In the next chapter, we will be analyzing the impact of the cold-start problem in the Accel-Sim
simulator. We’ll mostly use the DCT and 3D U-Net workloads for this, as well as the OceanFFT
one.
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5. THE COLD-START PROBLEM IN
ACCEL-SIM

We can now safely conclude that GPGPU hardware and workloads suffer from cold caches. In this
chapter, we will attempt to validate the existence of the cold-start problem when simulating. To this
end, we will use the Accel-Sim framework, with a similar configuration to the hardware we used in
the previous chapter.

5.1. Simulation setup
The simulator we will be using is Accel-Sim[10]. As discussed in Section 2.1, Accel-Sim uses the
GPGPU-Sim[9] system to perform actual simulation. However, we are able to speed everything up
by avoiding full-functional simulation. To achieve this, we use pre-generated traces, which can be
replayed in the simulator. This also means that we can just use compiled binaries, not needing any
source at all.

In the experiments discussed below, we have used the GPGPU-Sim configuration for the NVIDIA
GeForce RTX 3070 hardware (running on SM 86; as described in [27]). Some of its configuration
parameters are shown in Figure 5.1.

Configuration parameter Value
L2 cache size 4 MB
Number of sets in L2 cache 64
L2 cache block size 128 B
L2 cache associativity 16
Number of memory controllers 16
Number of SMs 46
L2 Latency 187 cycles
DRAM Latency 254 cycles

Figure 5.1.: Simulator configuration parameters

Just like with the hardware analysis, we will be simulating each workload twice: once with the
cache flushed between kernel invocations, and once without. This is a feature that Accel-Sim natively
supports, using the -flush-l1 -flush-l2 arguments.

5.2. Preparation
In order to simulate each workload, we needed to profile them again. In the previous chapter, we
used NVIDIA’s Nsight Compute tool, which is a lightweight profiler. However, we need a cycle-level
trace for the simulator, which means that we will need something more powerful.

Preparing a workload for simulation has two big steps:

1. Profiling: Accel-Sim requires a cycle-level trace. We will discuss the exact process below, in
Section 5.2.1.

2. Post-processing: the trace, as generated in the profiling phase, is not yet fit for simulation.
Accel-Sim includes a post-processing tool, which allows us to convert the trace. We will also
shortly discuss this in Section 5.2.1.
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5.2.1. Profiling phase
One of the components of the Accel-Sim framework is an NVBit[15] tool.

NVBit is a framework, developed by NVIDIA, to instrument CUDA applications. It allows us to,
among others, catch certain events (like kernel invocations), and insert additional instructions and
calls in a kernel. Each NVBit tool is compiled into a shared library, which is then injected into the
application. To this end, the LD_PRELOAD trick is used; which allows us to load a shared library
before any other library.

Accel-Sim’s tool is in the util/tracer_nvbit/tracer_tool directory. It roughly works like this:

1. The runtime will register that the NVBit tool has declared the nvbit_at_cuda_event function.
At each CUDA event, this function will be invoked, with details on the event.

2. When the function is invoked, it checks if it is due to the invocation of a kernel that has not
been instrumented yet. If this is the case, the tool will instrument the kernel by adding a call
to instrument_inst before each instruction in the kernel. The arguments it passes to this
function call depend on the instruction that is being instrumented.

3. Each time instrument_inst is called, it receives some information about the instruction that
is to come. This information is written on a channel to another thread, which will write it to
a file.

In this way, a directory with a trace file for each kernel is generated. These trace files contain
an instruction-level trace for each kernel. Additionally, it generates kernelslist, an additional file
containing a reference to each file generated.

However, due to interleaving of threads, these traces are not in the correct order yet for the
simulator. The post-processing tool, in the util/tracer_nvbit/tracer_tool/traces-processing
directory, will make sure that the traces are ready to be used. It reads each trace file listed in the
given kernelslist file, sorting the instructions by thread block. This makes sure that the simulator
can quickly access the instructions it needs to simulate a given thread block.

These sorted traces are each written to their own new file, while an additional kernelslist.g file
is generated, referencing the processed traces.

5.3. Simulation results
In this section, we will show that the impact of this problem persists in the Accel-Sim simulator.
However, one of the first things we have noticed is that the simulator is affected much differently
from the real hardware.

Due to the inherent overhead in simulating GPUs, we had to limit the number of kernels we could
simulate(in this case, up to 130, which fit the DCT nicely, but served as a cutoff for 3D-UNet), as
well as which workloads we could focus on. The DCT and 3D U-Net workloads were selected for
this analysis, as they showed promising results in the hardware analysis. Following our discussion
about inter-kernel data reuse, we also included the OceanFFT workload (from the CUDA SDK) in
this analysis.

The graphs in Figure 5.2 show the results of this analysis. They follow the same structure as
Figure 4.2 from the hardware analysis: showing weighted IPC differences for each workload. The
first thing we noticed is that the simulator results are very different from the hardware results. Where
3D U-Net had kernels with a relative IPC difference of over 15% in hardware, the differences in the
simulator cap out around 5%. For DCT we notice a similar trend: the simulator results are much
lower than the hardware results. Where the hardware results showed that more than 50% of the
workload suffered from at least 20% in IPC difference, the simulator results give a maximum of 15%
(worth less than 1% of the workload).
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Effect of flushing on workloads

≥ 5% difference in IPC
≥ 10% difference in IPC
≥ 15% difference in IPC
≥ 20% difference in IPC

Workload 5% difference 10% difference 15% difference 20% difference
oceanFFT 21.69 % 21.69 % 21.69 % 21.69 %

dct8x8 5.84 % 3.75 % 0.69 % 0.00 %
3d-unet 3.75 % 0.00 % 0.00 % 0.00 %

Figure 5.2.: Weighted IPC differences

5.3.1. OceanFFT
In this figure, the OceanFFT workload really stands out, compared to the other workloads. When
looking into the structure of the OceanFFT workload, we noticed that it consists of only five kernels,
of which one (kernel #2) is significantly affected by the cold-start problem. The other four kernels
(kernel #1, #3, #4, and #5) are not affected by the cold-start problem at all (all of them suffering
less than 0.5% relative IPC difference), as you can see in Figure 5.3. We also compared the data
reuse factors for each of these kernels, and they are both very irregular, and a lot lower than DCT.

Kernel Name IPC Difference Weight Forward Reuse (%) Backward Reuse (%) Memory footprint
generateSpectrumKernel 0.28% 44.43% 12.50% n/a 33 564 671
regular_fft 31.40% 21.69% 50.00% 25.00% 16 779 666
vector_fft 0.45% 17.81% 0.00% 25.00% 16 780 062
updateHeightmapKernel 0.01% 6.00% 25.00% 0.00 % 16 777 216
calculateSlopeKernel 0.00% 10.08% n/a 18.18% 46 137 344

Figure 5.3.: OceanFFT kernels

In addition, we also noticed that OceanFFT suffers from another oddity: its kernels run faster
with flushed caches. Especially the second kernel, whose IPC increases with almost 50% if we flush
the caches, as you can see in Figure 5.4.

We assume that this might be caused by the fact that the second kernel only reuses a small fraction
of memory addresses used by the first one. This means that the caches are not warmed up enough
to be beneficial for the second kernel. Additionally, if a lot of cache lines are dirty, and need to be
flushed, this might stall the memory pipeline. As you can see in Figure 5.3, the first kernel has a
very large memory footprint (33.5 million unique addresses), which could easily flood the caches with
data that is not useful for kernel 2. If a large part of this data has to be evicted (and, thus, possibly
written back to DRAM), this can pile up in the memory hierarchy, causing the processors to stall.
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Kernel Name Instruction Count IPC (flushing) IPC (no flushing) Forward Reuse (%)
_Z22generateSpectrumKernel 10 938 744 844 2482.26 2487.96 12.50%
_Z11regular_fft 5 339 348 992 640.58 439.84 50.00%
_Z10vector_fft 4 385 144 832 1401.63 1397.86 0.00%
_Z23updateHeightmapKernel_y 147 6395 008 683.88 684.10 25.00%
_Z20calculateSlopeKernel 2 482 536 508 1161.11 1160.73 n/a

Figure 5.4.: OceanFFT IPC values

5.4. Simulator conclusion
Once again, we see that the cold-start problem persists. However, it is much less severe in the
simulator; the maximum impact of the cold-start problem on 3D-UNet drops from over 20% to
around 15%. For DCT, this shows even more, as a large part of the workload (just shy of 60%)
suffered from at least 20% of IPC difference in hardware, while in the simulator, not a single kernel
suffers that much. Instead, the differences cap out around 15%, with less than 1% of the workload
suffering from that.

We do not know what caused this discrepancy between the hardware and the simulator, however,
we have a hypothesis. Perhaps there are some hardware details that get lost in the simulator, which
is a slightly more idealized version of the hardware. Additionally, a lot of hardware details have
to be gathered from micro-benchmarks [10], because vendors keep these details secret. While both
the hardware (NVIDIA GeForce RTX 3080) and simulator (NVIDIA GeForce RTX 3070) used the
same micro-architecture, there might be some subtle details that impacted the cold-start problem.
Finally, our hardware experiments (and the simulation) ran using NVIDIA’s Ampere architecture,
which is not among the heavily tested architectures in the original Accel-Sim paper.

In the next chapter, we will start looking for a mitigation, limiting the impact of the cold-start
problem. We will mostly analyze the DCT workload, due to its short runtime and thus reasonable
runtime. Two main factors will exclude the OceanFFT workload from this analysis: firstly, the most
interesting kernel is the second one, limiting one of our mitigations. Secondly, its oddity (the fact
that it runs faster with flushed caches) makes it a bad candidate for our second mitigation.
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6. MITIGATION

So far, we have talked about the cold-start problem in both hardware and simulation. The reason
why we have looked into it, is because of how we approach simulating large workloads in GPUs.
Instead of simulating each and every kernel, we only simulate a select subset. Usually, these are
selected using both profiling and some form of clustering based on characteristics. However, since
we only simulate intermittent kernels, cache state might be lost and/or incorrect; which leads to
inaccuracies.

Taking this all into account means that we see a few options for mitigation:

• Simulate preceding kernels: this is the most naive, but also the most computationally
intensive approach. Simulating all instructions from one or more kernels that come right
before the one we need ensures that the cache state is as close to the real state as possible, but
also increases the simulation time.

• Simulate certain instructions from preceding kernels: this option is more refined than
the previous, finding a balance between computation time and accuracy. Since we have the full
trace of each kernel, we can select only the memory instructions from the preceding kernels,
simulating those to warm up the caches artificially. Especially when kernels contain a lot of
computations, and fewer memory loads/stores, this could allow for a higher accuracy at a very
low cost.

• Compute a correction factor: logic dictates that there should be a way to compute a
correction factor for the cold-start problem. There are different factors that we could analyze
ahead-of-time to compute this factor.

In Sections 6.1 and 6.2, we will focus on the second option, opting to simulate memory instructions
in order to artificially warm up the caches. Section 6.3 will focus on the third option, offering some
possible factors that could be used to compute a correction factor.

6.1. Gathering trace info
The Accel-Sim [10] tool comes with an NVBit [15] tool and post-processor which are already used to
generate the instruction-level traces that are eventually fed to the simulator itself. By default, this
tool generates a number of files:

• traces/kernelslist: a list of all kernels that were run, with their respective kernel IDs.

• traces/stats.csv: a CSV file containing some global statistics about each kernel.

• traces/kernel-<number>.trace: the actual instruction-level trace for each kernel, identified
by their numbers.

We have expanded this tool1 to output an additional file for each kernel: traces/kernel-
mem-<number>.trace. This file contains all memory instructions issued by the selected kernel, as
well as the final EXIT instruction (omitting this one would lead to a segmentation fault in the simu-
lator). The original NVBIT tool reports for each instruction it instruments whether it is a memory
instruction or not. We use that information to filter out the instructions we need.

1See Appendix A for more details.

28



Kernel Index Kernel Name IPC Difference (%)
11 _Z27CUDAkernelQuantizationFloatPfi 13.42
13 _Z14CUDAkernel2DCTPfS_i 12.17
114 _Z27CUDAkernelQuantizationFloatPfi 10.36
115 _Z15CUDAkernel2IDCTPfS_i 15.05

Figure 6.1.: High IPC difference kernels in DCT

As with the original traces, we need to post-process each memory trace before feeding it to the
simulator. This post-processing step sorts the instructions by their thread block, allowing the simu-
lator to easily access the next instruction. By using the same format as the original tool, we ensure
that the existing post-processor can also handle these new files2.

6.2. Kernel selection
In order to warm up the simulator’s caches, we will be simulating the memory instructions from
preceding kernels. However, this is once again a trade-off: the more kernels we use to warm up the
caches, the more accurate the simulation will be, but the longer it will take. We have selected four
kernels from the DCT8x8 workload with high IPC differences, as shown in Figure 6.1.

For each of these kernels, we used multiple simulations:

• Perfect warmup: the kernel is simulated in order, with all preceding kernels simulated in
full.

• Full memory warmup: the kernel is simulated in order, with all memory instructions pre-
ceding it simulated (for kernel i, this means all memory instructions from kernels 1 until i − 1
are simulated).

• Partial memory warmup: the memory instructions of up to 10 preceding kernels are simu-
lated.

In Figures 6.2 and 6.3, we have plotted the results of these simulations. For each kernel, we have
plotted the result of perfect warmup as a black line, this was the golden reference we tried to reach.
Additionally, the light-brown line represents full memory warmup, while the blue line represents
partial memory warmup. Both raw IPC values and accuracy (in percents) are shown.

From these figures, we can quickly deduce that even a single preceding kernel can lead to drastic
accuracy increases: most kernels reach over 99% accuracy with just one kernel warmed up.

An additional striking detail is that more kernels does not always imply a higher accuracy. This
might be due to some non-determinism in the simulator.

2Note: Accel-Sim by default uses a compressed format for memory instructions, taking up less disk space in their
traces. However, due to time constraints, we have elected to work with the uncompressed format, which takes up
more disk space.
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Kernel Kernel 11 Kernel 13 Kernel 114 Kernel 115
0 warmup kernels 1028.44 634.89 1230.01 636.46
1 warmup kernel 1171.94 758.18 1381.29 750.03
2 warmup kernels 1171.38 726.12 1380.51 749.68
3 warmup kernels 1170.12 719.05 1361.99 752.05
4 warmup kernels 1178.72 738.48 1381.92 749.42
5 warmup kernels 1179.15 751.09 1376.45 729.17
6 warmup kernels 1172.36 749.07 1375.52 746.37
7 warmup kernels 1178.44 748.02 1382.70 752.67
8 warmup kernels 1169.98 741.97 1363.52 723.91
9 warmup kernels 1172.79 735.85 1383.96 749.16

10 warmup kernels 1170.54 736.70 1373.66 750.21
Full memory warmup 1169.42 747.76 1371.81 752.40

Perfect warmup 1178.30 736.78 1375.52 745.25

Figure 6.2.: DCT Mitigation results (absolute IPC values)
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Kernel Kernel 11 Kernel 13 Kernel 114 Kernel 115
0 warmup kernels 87.28% 86.17% 89.42% 85.40%
1 warmup kernel 99.46% 97.10% 99.58% 99.36%
2 warmup kernels 99.41% 98.55% 99.64% 99.40%
3 warmup kernels 99.31% 97.59% 99.02% 99.09%
4 warmup kernels 99.96% 99.77% 99.54% 99.44%
5 warmup kernels 99.93% 98.06% 99.93% 97.84%
6 warmup kernels 99.50% 98.33% 100.00% 99.85%
7 warmup kernels 99.99% 98.47% 99.48% 99.00%
8 warmup kernels 99.29% 99.30% 99.13% 97.14%
9 warmup kernels 99.53% 99.87% 99.39% 99.48%

10 warmup kernels 99.34% 99.99% 99.86% 99.33%
Full memory warmup 99.25% 98.51% 99.73% 99.04%

Figure 6.3.: DCT Mitigation results (accuracy)
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6.2.1. Full Memory Warmup
A striking result from the figures above, is that the full memory warmup approach does not yield
100% accuracy. The cause of this might be the ordering of instructions; since we remove all non-
memory instructions, they might get executed in a different order. This could lead to different cache
states, and thus different IPC values.

In the example in Figure 6.4, we have two threads executing. Each of these has a different pattern:
one starts with some memory instructions, performing arithmetic afterward, while the other does
the opposite. We assume that each instruction takes the exact same time, ignoring latencies as well.
This causes all memory instructions to be executed serially, resulting in a certain cache state.

1 ; Thread 1
2 ld 0x0001
3 ld 0x0002
4 ld 0x0003
5 ; arithmetic
6 ; arithmetic
7 ; arithmetic

1 ; Thread 2
2 ; arithmetic
3 ; arithmetic
4 ; arithmetic
5 ld 0x000A
6 ld 0x0014
7 ld 0x0028

Thread 1

ld 0x0001
0
1
2
3

0x0001

ld 0x0002
0
1
2
3

0x0001
0x0002

ld 0x0003
0
1
2
3

0x0001
0x0002
0x0003

(other)

(other)

(other)

Thread 2

(other)

(other)

(other)

ld 0x000A
0
1
2
3

0x0001
0x000A
0x0003

ld 0x0014
0
1
2
3

0x0014
0x0001
0x000A
0x0003

ld 0x0028
0
1
2
3

0x0028
0x0001
0x000A
0x0003

Figure 6.4.: Interleaving example

When we execute only the memory instructions in the “trace” above, we get a whole different
execution. See Figure 6.5 for the result of that execution.

When we compare the final cache state of each execution (see also Figure 6.6), we can see a clear
difference. This can impact the performance of the next kernel: for the first execution (a perfect
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1 ; Thread 1
2 ld 0x0001
3 ld 0x0002
4 ld 0x0003

1 ; Thread 2
2 ld 0x000A
3 ld 0x0014
4 ld 0x0028

Thread 1

ld 0x0001

ld 0x0002

ld 0x0003

Thread 2

ld 0x000A

ld 0x0014

ld 0x0028

0
1
2
3

0x0001
0x000A

0
1
2
3

0x0014
0x0001
0x0002

0
1
2
3

0x0028
0x0001
0x0002
0x0003

Figure 6.5.: Interleaving example - memory only

warmup), accessing 0x000A would result in a cache hit, while 0x0002 would miss. The opposite
happens when we only simulate memory instructions (full memory warmup, like in execution 2).
This can explain the slight inaccuracy we see for full memory warmup.

0
1
2
3

0x0028
0x0001
0x000A
0x0003

0
1
2
3

0x0028
0x0001
0x0002
0x0003

Figure 6.6.: Interleaving example - cache state differences

6.3. Correction factor
Since the cold-start problem is inherently tied to the cache state, we should look at factors that can
impact this state in order to find a correction factor. Tools like NVIDIA’s Nsight Compute [14] and
NVBit [15] can provide detailed cache statistics, which might be used to compute this factor. Some
possible factors we considered are:

• Profiler differences: by profiling a workload twice, once with and once without flushing, one
can see the impact of the cold-start problem in silicon. This data might be used to improve
simulation results.

• Profiler cache statistics: a detailed profiler can provide statistics about hits and misses, which
in turn could be used to compute the correction factor.

• Degree of data reuse: by using an instruction-level trace, it is possible to extract all memory
references. The ratio total memory references

unique memory references
could inform us about the cache state. We

have outlined the main ideas of forward data reuse in Section 4.3 (that section also includes
the notion of backward data reuse, but that will prove not as useful here).

• The DRAM delay: the difference in cycles between a cache hit and a DRAM access could be
useful to get an idea of the amount of cycles lost due to cold-start.
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• The number of memory controllers: since each memory controller can issue requests in parallel,
the number of controllers might impact the cache state, as well as the cost of a cache miss.

• L2 miss rate: this value could be used together with the number of memory instructions.

Some of these factors will be used in Section 6.3.1, where we outline a formula that seems to
perform rather well. All the data used for that formula can be gathered by simulating a single
kernel, and/or profiling the workload.

However, we have to be careful when finding a correction factor. Since some factors that could
impact cache state (e.g. the number of cache evictions) are hardware- and platform-dependent, we
could end up with a correction factor that only works for a specific platform.

6.3.1. Proposed model
Through analysis of the data, we have come up with a formula that allows use to compute a correction
factor. This correction factor proved very effective, resulting in an average 95% accuracy for the
DCT workload. Especially for problematic kernels (kernels suffering from the cold-start problem),
this correction factor succeeded in improving accuracy.

The main goal is to compute a subtractive factor for the number of cycles, i.e. provide an upper
bound on how many cycles could have been saved. To this end, we will use the following metrics, all
of which can be gathered by simulating a single kernel and/or profiling the workload:

• Unique DRAM accesses: we modified Accel-Sim to output each DRAM request. By filtering
these on unique values, we know the number of cold misses.

• Memory controller occupation: since the memory controllers in the system are able to
process requests in parallel, the number of controllers might impact the number of cycles lost
due to latency. Accel-Sim outputs their occupancy by default (the lines starting with dram[]).
Importantly, we also take into account how evenly they are used; see Section 6.3.1.

• Cache line size: the DRAM accesses contain byte-level memory addresses. However, multiple
consecutive addresses map to the same cache line, which might avoid some cold misses.

• Reuse factor: we use the forward reuse factor from the previous kernel. This value acts as a
correction on the number of cold misses: if only a few memory addresses are reused, most cold
misses aren’t due to the cold-start problem.

• Latencies: the number of cycles saved is directly related to the DRAM- and L2-latency of the
system.

Combining all of these, we came up with the following formula:

IPC = instructions

cyclesf − ∆ (6.1)

∆ = accesses

controllers · line
· fwdi−1 · (DRAM − L2) (6.2)

Here, IPC is the final (corrected) IPC value, instructions is the number of dynamically executed
instructions, cyclesf is the number of cycles when simulating the kernel with cold caches (in flushed
mode), and ∆ is the correction factor. We use accesses for the number of unique DRAM accesses,
controllers for the memory controller occupancy, line for the size of a cache line, and reuse for the
(forward) reuse factor. DRAM and L2 are the latencies of the respective memory regions.

The main idea behind it, is that we attempt to estimate the number of cycles lost due to the
cold-start problem, hence the subtractive factor. The number of unique DRAM requests, gives us an
upper bound on the number of cold misses, since each unique request is a cache miss that couldn’t
have been evicted yet. This value is corrected by the forward reuse factor from the previous kernel,
since that is an upper bound for the fraction of cold misses that could have been warmed up by the
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previous kernel. The number of cycles saved per cold miss should be equal to DRAM − L2, as this
is the difference in delays between the DRAM and the L2 cache. Finally, we divide by the number of
memory controllers, because multiple parallel requests can be issued, reducing the number of stalls.
Since each DRAM request is an address, we divide by the cache line size to get the number of cache
lines that are accessed, and thus the number of actual cache misses.

Finally, we correct the original cycle count cyclesf , giving us the corrected IPC value.

Memory controllers

Not all workloads use all memory controllers evenly - in the worst case, a single controller does all
the work while the others are idle. In that case, it would be incorrect to use the total number of
controllers in the formula. To mitigate this, we compute the evenly used controllers, and use that
value in the formula.

Accel-Sim outputs memory controller data under the form of number of DRAM requests made,
per controller, per bank. Additionally, this data is output for both reads and writes.

We compute the evenly used controllers from the average occupancy of each controller (occctrl) as
follows:

occctrl =
∑banks

i=1 readsctrl,i +
∑banks

i=1 writesctrl,i

2 · banks
(6.3)

controllers =
∑

ctrl occctrl

maxctrl occctrl
(6.4)

Where:

• occctrl is the average occupancy of a controller ctrl;

• banks is the number of memory banks;

• readsctrl,i is the number of read accesses made by controller ctrl to bank i;

• writesctrl,i is the number of write accesses made by controller ctrl to bank i; and

• controllers is the number of evenly used controllers (the final value used in the formula for ∆).

For DCT, this value was around 8 in our experimental setup, meaning that 8 out of the 16
controllers were used. OceanFFT, however, used almost all controllers evenly.

Results

This formula was tested on the DCT workload and improved on the sensitive kernels (11, 13, 114,
and 115). The other kernels suffered from a slight drop in accuracy, when compared to their raw
accuracy (i.e. using no correction factor at all).

Note: the formula above cannot be used for OceanFFT, as it uses a subtractive factor. In
OceanFFT, we would need to increase the number of cycles (since starting from a cold cache in-
creases the IPC for some kernels).

In Figure 6.7, we have gathered some results for the DCT workload. For a number of kernels, the
accuracy of the formula is compared to the raw accuracy (meaning the flushed accuracy, without any
corrections). As you can see, the overall accuracy took a slight hit (dropping from 98% to around
96%), while the sensitive kernels improved (from 89% to 93%). In Section 6.4, we will compare the
accuracy of this approach against the accuracy for memory warmup (with a single kernel).

The exact values are slightly different from the ones used in Section 6.2, but the general trend is
the same. This is due to the inherent non-determinism in the simulator, which can lead to slightly
different results for the same kernel.
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Index IPC (flushing) IPC (no flushing) IPC (corr.) ∆ Accuracy (raw) Accuracy (corr.)
1 1912.75 1904.84 1912.75 0 99.58% 99.58%
2 1896.46 1899.59 1944.35 268 99.84% 97.64%
3 1891.79 1894.21 1939.43 268 99.87% 97.61%
4 1882.67 1892.82 1929.85 268 99.46% 98.04%
5 1897.33 1889.02 1945.26 268 99.56% 97.02%

10 1869.58 1889.89 1916.10 268 98.93% 98.61%
11 1035.63 1174.34 1066.00 268 88.19% 90.77%
12 1831.25 1825.83 1879.62 268 99.70% 97.05%
13 640.14 719.45 696.00 805 88.98% 96.74%
14 739.50 731.83 763.08 268 98.95% 95.73%
15 743.09 715.44 766.91 268 96.14% 92.81%

110 744.12 744.12 768.01 268 100.00% 96.79%
111 745.07 743.86 769.02 268 99.84% 96.62%
112 747.15 738.05 771.24 268 98.77% 95.50%
113 755.86 757.64 780.52 268 99.76% 96.98%
114 1248.03 1380.66 1283.30 268 90.39% 92.95%
115 804.32 755.06 811.65 72 93.48% 92.50%
116 689.91 735.53 700.14 135 93.80% 95.19%
117 1011.89 1047.26 1022.41 134 96.62% 97.63%
118 702.35 767.67 712.56 134 91.49% 92.82%

Average accuracy (entire workload) 98.16% 95.92%
Average accuracy (suffering kernels) 89.19% 93.49%

Figure 6.7.: DCT mitigation results

6.4. Comparison
In Figure 6.8, we see that both mitigation approaches are able to eliminate the (negative) outliers.
However, since there are so few suffering kernels, the median doesn’t improve by a lot. In general,
we can conclude that either mitigation approach is able to improve the accuracy of the simulator.

Additionally, we also included minimum accuracy, the first quartile, the median, the standard
deviation, the third quartile, and the maximum accuracy for each of these methods. Due to the
elimination of outliers, the standard deviation is lower for both mitigation methods, compared to
the raw accuracy.

Due to temporal locality, we expect the impact of a kernel on the caches to be lower the further
back in time it is. This is also reflected in the results: Figure 6.8 clearly shows that full memory
warmup has no practical benefits over just using a single kernel to warm up the caches. Worse still,
all metrics are slightly worse for full memory warmup, compared to partial memory warmup.

We have included the scripts used to calculate these values in our repository, see Appendix A for
more details.
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Method Minimum Q1 Median (std. dev.) Q3 Maximum
No mitigation 88.19% 97.56% 98.78% (2.10) 99.58% 100.00%

Correction factor 90.77% 94.69% 95.99% (1.98) 97.24% 99.98%
Memory warmup (1 kernel) 94.76% 97.73% 98.69% (1.20) 99.55% 100.00%

Full memory warmup 93.46% 97.70% 98.79% (1.33) 99.36% 99.98%

Figure 6.8.: Comparison of mitigation methods

6.5. Conclusion
We have looked into three possible mitigations, and analyzed their strengths and weaknesses. First,
there is the naive approach of simulating all preceding kernels in full, guaranteeing a correct warmup,
and thus a “perfectly accurate” simulation. However, this has the drawback of being incredibly
computationally intensive, negating the work done by sampling kernels in the first place.

Secondly, we have looked into simulating only parts of the previous kernels. In this case, we have
selected the memory instructions of preceding kernels and simulated those to artificially warm up
the caches. Even for kernels that suffered a lot from the cold-start problem, we have shown that
warming up using a single kernel has a drastic impact on the accuracy already. In many cases, a
single kernel was enough to reach over 99% accuracy.

Lastly, we have looked into computing a correction factor. The factor we proposed is based on the
number of cycles that could be saved, taking into account parallel requests and DRAM information.
This factor has less of a computational overhead (since no additional traces need to be simulated),
but resulted in a slightly lower accuracy than the memory warmup approach. However, we need to
be careful not to over-tune this factor, as it could limit the simulator to a specific platform (beating
the purpose of GPU simulation in the first place).

In general, both approaches are able to mitigate the cold-start problem, and improve the accuracy
of the simulator, especially for kernels that do suffer from it. Either method was able to raise the
accuracy of each DCT kernel to at least 90%, with the memory warmup reaching up to almost 95%.
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7. CONCLUSION
In this thesis, we have analyzed the cold-start problem in GPUs. We have shown that the cold-start
problem is a real issue, affecting the performance of GPUs in a significant way. We have also shown
that the cold-start problem is not limited to a single workload, but that it can affect a wide range
of workloads. In this chapter, we will present our conclusions, discussing both quantification and
mitigation.

7.1. Quantification
We started by analyzing whether the cold-start problem is an actual issue. To this end, we analyzed
multiple workloads on real hardware, and a limited number of them in the Accel-Sim simulator.
From this, we have concluded that the cold-start problem is a real issue, affecting the performance
of GPUs in a significant way.

7.1.1. The cold-start problem in hardware
We have analyzed the cold-start problem in real hardware, and have shown that it is a real issue.
Multiple workloads have shown a significant impact from the cold-start problem.

Additionally, we have weighted each kernel based on its instruction count, and have seen that its
severity changes based on the kernel’s weight. Taking into account is important because sampling
methods like Sieve uses these weights to select the kernels to simulate.

Finally, we also introduced the notion of forward and backward data reuse. These were defined as
the number of unique memory instructions that are reused. For any given kernel ki, we defined Mi

as the set of memory instructions used by ki. From this, we can compute both forward (fwdi) and
backward data reuse (bwdi) as:

fwdi = |Mi ∩ Mi+1|
|Mi|

(7.1)

bwdi = |Mi−1 ∩ Mi|
|Mi|

(7.2)

7.1.2. The cold-start problem in simulation
From all workloads we have analyzed in the hardware, we have selected a subset to analyze in the
Accel-Sim simulator. The main ones we have analyzed were DCT, 3D U-Net, and OceanFFT.

From this analysis, we have concluded that the cold-start problem is less severe in the simulator.
The maximum impact of the cold-start problem on 3D-UNet drops from over 20% to around 15%.

This is probably due to the fact that the simulator is an idealized version of the hardware. Addi-
tionally, some hardware details might have gotten lost in the conversion (especially if those details
aren’t publicly available).

OceanFFT

The OceanFFT workload really stands out, compared to other workloads. Strangely enough, the
simulator shows that it runs faster when the caches are flushed; especially the second kernel.

Our main assumption is that the first kernel fills up the caches with (dirty) unused data. When
the second kernel starts, it needs to perform a lot of write-backs to DRAM, causing flooding in the
memory hierarchy. In turn, this stalls the processors, causing the second kernel to run slower.

This will prove problematic for one of our mitigations.
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7.2. Mitigation
The last chapter of this thesis, Chapter 6, was dedicated to finding a mitigation for the cold-start
problem. We have identified three different avenues, two of which proved to be practical. Finally,
we have also compared their effectiveness.

The three avenues discussed were:

• Simulating preceding kernels in full: This method involves ensuring a consistent, warm
hardware state by simulating preceding kernels in full. However, this is quite infeasible, and
goes against the idea of sampling (which is used to speed up simulation).

• Memory-only simulation of preceding kernels: We only simulate the memory instructions
of preceding kernels. This is a very feasible and accurate method, partly thanks to memory
locality.

• Correction factor: We have also proposed a correction factor, which is based on the data
reuse of the kernels, among others. This removes the overhead of any additional simulation, at
the cost of a slightly lower accuracy.

7.2.1. Memory-only simulation
From the DCT workload, we have selected four kernels to analyze. For each of those kernels, we
simulated the memory instructions of up to 10 previous kernels. To be able to do this, we have
modified Accel-Sim’s builtin NVBit tool.

Our main conclusion from this analysis is that the memory-only simulation is very accurate. Even
simulating only a single additional kernel results in incredible accuracy. This makes sense, because
of the principle of memory locality.

7.2.2. Correction factor
Our final avenue was the correction factor. Using a selection of factors (like data reuse, forward data
reuse, and backward data reuse), we have proposed a formula to correct the IPC values of kernels.

Our main goal was to compute an upper bound for the number of cycles lost due to the cold-start
problem. We approximated this number to be proportional to:

• The number of (unique) DRAM requests made; this gives an idea of the number of cold misses.
We scale this value by dividing it by the number of memory controllers used (and the cache
line size).

• The forward data reuse factor of the previous kernel; this gives an idea of the fraction of cold
misses due to the cold-start problem.

• The difference in latencies between LLC (L2) and DRAM.

With these observations, we came up with the following formula:

IPC = instructions

cyclesf − ∆ (7.3)

∆ = accesses

controllers · line
· fwdi−1 · (DRAM − L2) (7.4)

Where:

• IPC is the final, corrected IPC;

• instructions is the number of instructions executed by the kernel;

• cyclesf is the number of cycles as reported by the simulator (in cold-start mode);
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• ∆ is the correction factor;

• accesses is the number of unique DRAM accesses made by the kernel;

• controllers is the number of memory controllers used1;

• line is the cache line size;

• fwdi−1 is the forward data reuse factor of the previous kernel; and

• DRAM and L2 are the DRAM and L2 cache latencies, respectively.

We found that this formula does manage to eliminate the (lower) outliers in IPC values, at the
cost of a slightly lower median accuracy.

7.2.3. Comparison
In the final section, Section 6.4, we have compared the two methods. We have found that the
memory-only simulation is the most accurate. A strange result here is that full memory simulation
is less accurate than simulating just a single kernel. Since the numbers are quite close together, we
assume that this is largely due to non-determinism in the simulator.

1We count memory controllers that are used less than others, as partial memory controllers; see Section 6.3.1.
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A. CODE REPOSITORY

Both mitigations required slight changes to both the Accel-Sim simulator and the GPGPU-Sim ver-
sion it depends on. These changes are available in the following repository: https://github.com/jay-
tux/accel-sim-cold-start, and https://github.com/jay-tux/gpgpu-sim-cold-start.

A.1. Memory-only simulation
To enable memory-only simulation, we only modified the util/tracer_nvbit/tracer_tool/tracer_tool.cu.
It should be used accordingly to Accel-Sim’s original instructions. However, instead of producing
one trace file per kernel, it will produce two. The first is the original trace file, and the second is a
memory-only trace file.

For the oceanFFT workload, for example1:

$ LD_PRELOAD=./util/tracer_tool/tracer_tool.so /path/to/oceanFFT
Writing results to kernel-1.trace (memory file kernel-mem-1.trace)
Writing results to kernel-2.trace (memory file kernel-mem-2.trace)
Writing results to kernel-3.trace (memory file kernel-mem-3.trace)
Writing results to kernel-4.trace (memory file kernel-mem-4.trace)
Writing results to kernel-5.trace (memory file kernel-mem-5.trace)

$ ./util/tracer_tool/traces-processing/post-traces-processing ./traces/kernelslist

This will generate thirteen files: five kernel traces, five memory-only kernel traces, two kernel lists
(kernelslist and kernelslist.g), and a stats.csv file. We can now use these traces to create a
memory-only simulation. Say we want to simulate the following process:

1. The second kernel, in memory only mode; and

2. The third kernel, fully (in order to get IPC values for that kernel).

We can now create a new kernel list kernel3-warmup2.g containing the following lines:

1 kernel-mem-2.traceg
2 kernel-3.traceg

If we instruct Accel-Sim to simulate this kernel list, it will simulate the second kernel in memory-
only mode and the third kernel fully, allowing us to gather the data we wanted.

A.2. Correction factor
The correction factor requires a slight change in the GPGPU-Sim backend, as well as a set of scripts
to automate the process. We modified GPGPU-Sim to output each L2 cache miss (which results in
a DRAM request). These output lines are always prefixed with [COLD_START_DRAM_REQ]. We also
need the modified tracer as used in the previous section (Appendix A.1).

Additionally, we created a set of scripts to extract the actual numbers from the Accel-Sim output.
These scripts live in the ./util/cold_start/ directory. The scripts rely on a few C++-programs,
which can be built using the supplied Makefile. The main script is the ./util/cold_start/wrapper.sh
script, which needs the following inputs (in order):

1In the code examples, we assume that the user is in the root of the repository.

44

https://github.com/jay-tux/accel-sim-cold-start
https://github.com/jay-tux/accel-sim-cold-start
https://github.com/jay-tux/gpgpu-sim-cold-start


1. The Accel-Sim output file2; this output should contain the kernel we are interested in.

2. The path to the memory traces directory, as generated by the tracer tool. This directory should
contain only two files: the memory trace for the previous kernel and for the current kernel.
Make sure they are named kernel-mem-X1.traceg and kernel-mem-X2.traceg (where X1 and
X2 are consecutive integers).

3. The GPGPU-Sim configuration file passed to Accel-Sim; this is needed to extract both latencies
(DRAM and L2).

4. Finally, the name of the workload; this is used for the name of the output file.

The script will extract all the required data, and create a file called <workload>.csv.

A.2.1. Script process
The script runs the following steps:

1. Extract kernel names, cycle counts, instruction counts and (cold) IPC values from the output
(using the basics.py script);

2. Extract the number of unique DRAM requests from the output (using the mem_access pro-
gram);

3. Extract the forward reuse factor from the memory traces (using the reuse program);

4. Extract the DRAM and L2 latencies from the GPGPU-Sim configuration file; and finally

5. Merge all previous outputs together (using the merge.py script).

2By default, this output is printed straight to standard output. To use this output, it should be redirected to a file.
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